

PPC Reference Design

Version 1.1

August 2002

August 5, 2002 i

Table of Contents

1 OVERVIEW ..1

2 BLOCK DIAGRAM ...1
2.1 PROCESSOR LOCAL BUS (PLB) ..3
2.2 ON-CHIP PROCESSOR BUS (OPB) ..3

2.3 ON-CHIP MEMORY BUS (OCM) ..4
2.4 DEVICE CONTROL REGISTERS (DCR) ..4
2.5 PPC REFERENCE DESIGN INTERRUPTS ...5

2.6 PPC REFERENCE DESIGN CLOCKS ...5
2.7 PPC REFERENCE DESIGN RESET ...6

3 PPC REFERENCE DESIGN MEMORY MAP ...8

3.1 PLB MEMORY MAP...8
3.2 DCR MEMORY MAP..8

4 PPC REFERENCE DESIGN GPIO PORT ..9

5 PPC REFERENCE DESIGN HDL ORGANIZATION ...10
6 PPC REFERENCE DESIGN SOFTWARE SOURCE FILES ..13
7 SIMULATION AND VERIFICATION ..14

7.1 SWIFT AND BFM CPU MODELS ..14
7.2 BEHAVIORAL MODELS..14

8 SYNTHESIS AND IMPLEM ENTATION..15

9 DESIGN FLOW ENVIRONM ENT...15
10 PPC REFERENCE DESIGN FILE LISTINGS ...15

10.1 USING THE MAKEFILE AND FLOW.CFG F ILES...16

10.2 THE BRAM_INIT.BMM F ILE...17
10.3 THE SRC.LST F ILE...18
10.4 THE GLOBAL_PARAM.V FILE..19
10.5 BUS FUNCTIONAL LANGUAGE..19

10.6 THE OPB_DCL. INC FILE ...20
11 INSTRUCTIONS FOR RUNNING FUNCTIONAL SIMULATIONS21

11.1 SWIFT S IMULATIONS ..23

11.2 BFM SIMULATIONS ...23
12 INSTRUCTIONS FOR SYNTHESIZING THE DESIGN ..24
13 INSTRUCTIONS FOR FPGA IMPLEMENTATION..26

August 5, 2002 ii

14 INSTRUCTIONS FOR RUNNING BACK-ANNOTATED TIMING SIMULATIONS28
14.1 SWIFT S IMULATIONS ..29

15 FLASH AND SRAM INTERFACE IP CORE (IPIF APPLICATION)30
15.1 FLASH AND SRAM READ CYCLE...32
15.2 FLASH AND SRAM WRITE CYCLE..32

August 5, 2002 iii

Figures

FIGURE 1 - PPC REFERENCE DESIGN BLOCK DIAGRAM..2
FIGURE 2 - CLOCK GENERATION ...6
FIGURE 3 - RESET GENERATION ...7
FIGURE 4 - HDL ORGANIZATION ...11
FIGURE 5 - PPC REFERENCE DESIGN DIRECTORY STRUCTURE...16
FIGURE 6 - MAKEFILE AND FLOW.CFG USAGE ..17
FIGURE 7 – FUNCTIONAL SIMULATION..22
FIGURE 8 – SYNTHESIS ...25
FIGURE 9 – IMPLEMENTATION...27
FIGURE 10 - BACK-ANNOTATED TIMING S IMULATIONS ..29
FIGURE 11 - FLASH AND SRAM READ CYCLE ...32
FIGURE 12 - FLASH AND SRAM WRITE CYCLE..33

August 5, 2002 iv

Tables

TABLE 1 - PLB MEMORY MAP ..8
TABLE 2 - OPB MEMORY MAP..8
TABLE 3 - DCR BUS MEMORY MAP...9
TABLE 4 - GPIO PORT DESCRIPTION...9
TABLE 5 - PPC REFERENCE DESIGN IP WRAPPER F ILE ...12
TABLE 6 - PPC REFERENCE DESIGN TOP LEVEL F ILE ..12
TABLE 7 - PPC REFERENCE DESIGN TEST BENCH F ILE..13
TABLE 8 - SOFTWARE SOURCE F ILES ..13
TABLE 9 - F ILES IN $V2PRO/ PLATFORMS/ MEMEC_DESGIN_V2PRO_BOARD..................................16
TABLE 10 - F ILES IN $V2PRO/PLATFORMS/ MEMEC_DESGIN_V2PRO_BOARD /SYS17
TABLE 11 - F ILES IN $V2PRO/PLATFORMS/ MEMEC_DESGIN_V2PRO_BOARD /SYS/VERILOG18
TABLE 12 - F ILES IN $V2PRO/PLATFORMS/ MEMEC_DESGIN_V2PRO_BOARD /SIM/FUNC_SIM19
TABLE 13 - F ILES IN $V2PRO/PLATFORMS/ MEMEC_DESGIN_V2PRO_BOARD /SIM/BFL19
TABLE 14 - F ILES IN $V2PRO/PLATFORMS/ MEMEC_DESGIN_V2PRO_BOARD /SIM/BA_SIM...............20
TABLE 15 - F ILES IN $V2PRO/PLATFORMS/ MEMEC_DESGIN_V2PRO_BOARD /SIM/TESTBENCH/VERILOG

..20
TABLE 16 - F ILES IN $V2PRO/PLATFORMS/ MEMEC_DESGIN_V2PRO_BOARD /PAR.........................21
TABLE 17 - F ILES IN $V2PRO/PLATFORMS/ MEMEC_DESGIN_V2PRO_BOARD /SYN.........................21
TABLE 18 - INSTRUCTIONS FOR RUNNING FUNCTIONAL SIMULATIONS (CPU SWIFT MODEL)23
TABLE 19 - INSTRUCTIONS FOR RUNNING FUNCTIONAL SIMULATIONS (BFM)....................................24
TABLE 20 - INSTRUCTIONS FOR SYNTHESIZING THE DESIGN ..25
TABLE 21 - INSTRUCTIONS FOR IMPLEMENTING THE DESIGN ..28
TABLE 22 - INSTRUCTIONS FOR RUNNING BACK-ANNOTATED TIMING S IMULATIONS30
TABLE 23 - FLASH AND SRAM INTERFACE IP CORE ..31

August 5, 2002 1

1 Overview

The PPC Reference Design is intended to demonstrate some of the features and capabilities of
the PowerPC processor within the Virtex-II Pro™ FPGA. An IBM Core Connect™ infrastructure is
used to connect the PPC core to numerous peripherals using the Processor Local Bus (PLB), On-
Chip Peripheral Bus (OPB), and Device Control Register (DCR) buses to build a complete
system. This document describes the PPC Reference Design and provides information about
how the system is organized and implemented. Several of the peripheral functions included in the
design (i.e. SRAM and Flash) are not actually functioning without the addition of the optional
Memec Design P160 Communications Module. The document also discusses verification
methodologies including software-driven and bus-model-driven simulations. A complete design
cycle incorporating simulation, synthesis, and FPGA implementation is described. The
information presented introduces many aspects of the PPC Reference System, but the user
should refer to additional documentations contained in the Xilinx Virtex-II Pro Developers Kit for
more detailed information about the software, tools, peripherals, interface protocols, and
capabilities of the FPGA.

2 Block Diagram

The following figure provides a high-level view of the PPC Reference Design. This design
demonstrates a system that uses devices that are connected to the PLB, OPB, and DCR buses.
The PLB is primarily used to interface to the devices with higher bandwidth requirements (such as
high-speed memory devices), while the OPB is dedicated to low-speed I/O devices such as
UART, LCD, and GPIO. The OPB offers a less complex protocol relative to the PLB, making it
easier to design peripherals that do not require high performance. The OPB also has the
advantage of supporting a greater number of devices, for systems requiring many low-speed I/O
devices. The DCR bus is primarily used to interface to simple I/O devices that contain a few data,
control, and status registers. Refer to the PLB, OPB, and DCR CoreConnect Architecture
Specifications for more information.

The Virtex-II Pro development board is used to test this reference design. This board is based on
the Xilinx XC2VP4 FPGA and provides a set of features that make this development board a
suitable platform for evaluating Virtex-II Pro based designs. Some of the features of the Virtex-II
Pro development board are listed below:

• Xilinx XC2VP4/P7-FG456 FPGA
• Four Rocket I/O™ ports supporting 2.5Gbits/port
• Two on-board oscillators @ 100, and 125MHz
• On-board Oscillator Socket (4/8-Pin Oscillators)
• User Clock inputs via Differential SMA Connectors
• 32M Mobil SDRAM Memory
• LCD Panel
• Two 18V04 ISP PROMs
• JTAG Programming/Configuration Port
• CPU JTAG/Debug Port
• CPU TRACE Port
• System ACE™ Connector
• RS232 Port
• User LEDs
• User DIP Switch
• User Push-Button Switches

August 5, 2002 2

PPC

PLB-OPB,
OPB-PLB

Bridge

64-bit PLB
Memory

Controller

BRAM
(32K)

LCD
Interface

UART1

UART2

LCD
Panel

Terminal

Terminal

PLB
Bus

OPB
Bus

PLB
ARB

OPB
ARB

ISPLB

DSPLB

BRAM
(8K)

Packet
Processing

Engine
DSOCM

DCR

Rocket
I/O

PLB
Monitor

OPB
Monitor

DCR
Monitor

32-bit PLB
Flash/SRAM
Controller

8MB Flash
1MB SRAM

GPIO

User DIP
Switches

User
LEDs

SMA
Connectors

User PB
Switches

CPU Debug
Connector

JTAG
Port

Figure 1 - PPC Reference Design Block Diagram

August 5, 2002 3

2.1 Processor Local Bus (PLB)
The PLB is used to connect the CPU to high-performance devices, such as high-speed memory
controllers and offers a rich set of bus transactions that allow the CPU to access external memory
for code and operand transfers at full-speed. The high-performance features of the PLB protocol,
such as synchronous architecture and independent read/write data paths, enable the CPU to
achieve maximum speed in performance intensive applications. This reference design uses a 64-
bit PLB infrastructure with 64-bit master and 64/32-bit slave devices attached to the bus.
The PLB devices in this reference system consist of:

PLB Masters

• CPU Instruction-Side PLB Interface (ISPLB)
• CPU Data-Side PLB Interface (DSPLB)
• OPB-to-PLB Bridge

PLB Slaves
• BRAM Controller (CPU Instruction and Data Storage)
• SRAM/Flash Controller
• PLB-to-OPB Bridge

PLB Arbiter
• 8 Master, 64-bit Xilinx PLB Arbiter

PLB Bus Logic
• The specification for the PLB protocol requires that some additional logic be included in

the design to OR together the outputs of the slaves to create the PLB slave bus. This
sample system supports up to nine PLB slave devices, but can easily be expanded to
support additional slaves.

In general, all PLB devices are optimized around the Virtex-II Pro architecture and make use of
pipelining to improve maximum clock frequencies and reduce logic utilization. Refer to the
accompanying documentation for each device for more information about its design.

2.2 On-Chip Processor Bus (OPB)
The OPB is used to connect lower-performance peripheral devices to the CPU. The OPB has a
less complex architecture, which simplifies peripheral development. A PLB-to-OPB Bridge
translates PLB transactions into OPB transactions, allowing the CPU to access the devices
connected to the OPB. Devices that reside on the OPB can also access PLB devices by way of
an OPB-to-PLB Bridge. The OPB devices in this reference system consist of:

OPB Masters

• PLB-to-OPB Bridge-Out
OPB Slaves

• OPB Arbiter Configuration Registers
• General-Purpose Input/Output (GPIO)
• 16450 UART (UART1)
• 16550 UART (UART2)
• LCD Controller
• OPB-to-PLB Bridge-In

OPB Arbiter
• Master, 32-bit Xilinx OPB Arbiter

OPB Bus Logic
• The OPB protocol specification requires that some additional logic be included in the

design to AND/OR together the outputs of the slaves to create the OPB slave bus. This

August 5, 2002 4

sample system supports up to 13 OPB slave devices, but can easily be expanded to
support additional slaves.

In general, all OPB devices are optimized around the Virtex-II Pro architecture and make use of
pipelining to improve maximum clock frequencies and reduce logic utilization. Refer to the
accompanying documentation for each device for more information about its design.

The OPB devices in the reference design make use of Intellectual Property InterFace (IPIF)
modules to further simplify IP development. The IPIF converts the OPB protocol into common
interfaces, such as an SRAM protocol or a control register interface. IPIF modules also provide
support for DMA and interrupt functionality. IPIF modules simplify software development since the
IPIF framework has many common features and supports a discovery process using a
Configuration ROM (CROM). The CROM contains information about the devices in the system
(such as address mapping, device capabilities, and revisions) that software can read at boot-up
to configure its device drivers.

Note that the IPIF is designed mainly to support a wide variety of common interfaces, but may not
be the optimal solution in all cases. Where additional performance or functionality is required, the
user can develop a custom OPB interface. The IPIF protocols can also be extended to support
other bus standards, such as PLB. This allows the backend interface to the IP to remain the same
while the bus interface logic in the IPIF is changed. This provides an efficient means for
supporting different bus standards with the same IP device.

The OPB specification supports masters and slaves of up to 64 bits with a dynamic bus sizing
capability that allows OPB masters and slaves of different sizes to communicate with each other.
The PPC Reference Design uses a subset of the OPB specification, which only supports 32-bit
byte enable masters and slaves. Legacy devices utilizing 8- or 16-bit interfaces or those that
require dynamic bus sizing functionality are not directly supported. For systems requiring legacy
support, an OPB interface module is available to convert OPB byte enable cycles into dynamic
bus sizing transactions. It is recommended that all new OPB peripherals support byte enable
operations for better performance and reduced logic utilization.

2.3 On-Chip Memory Bus (OCM)
The Data Side of the OCM Bus (DSOCM) is used in this reference design to interface to the
Rocket I/O data buffers. These buffers consist of a Transmit buffer and a Receive buffer. The
DSBRAM memory (8KB block organized as 2K x 32 bits) connected to the DSOCM bus is
partitioned into segments to provide storage for program data, as well as transmit and receive
buffers for the Rocket I/O interface.

The Rocket I/O interface consists of DSBRAM, Packet Processing Engine (PPE) IP core from
Xilinx, and the Rocket I/O SERDES. The PPE control and status registers are accessed via the
processor DCR bus. All of the transmit and receive packet flow control is performed via the PPE
control and status registers.

2.4 Device Control Registers (DCR)
The DCR offers a very simple interface protocol and is used for accessing control and status
registers in various devices. It allows for register access to various devices without loading down
the OPB and PLB interfaces. The only DCR devices used in this reference design are the control
and status registers of the PPE and the DSOCM internal registers.

August 5, 2002 5

The CPU contains a DCR master interface that is accessed through special Move To DCR
(mtdcr) and Move From DCR (mfdcr) instructions.

The DCR slave devices connected to the DCR bus consist of:

• Packet Processing Engine (Rocket I/O interface)
• Data-Side OCM (DSOCM) registers

2.5 PPC Reference Design Interrupts
The CPU also contains two interrupt pins, one for critical interrupt requests and the other for non-
critical interrupts. The critical interrupt request is not used for this application while the non-critical
interrupt request of the processor is connected to the UART1 and UART2 interrupt outputs (these
interrupts are connected to the processor via an OR gate).

2.6 PPC Reference Design Clocks
Two Digital Clock Managers (DCM) are used to generate the clocks for the PPC Reference
Design. A 50 MHz input reference clock input is used to generate the main 50 MHz clock for the
PLB and OPB busses while a 100 MHz clock is generated for the DCR and OCM interfaces. The
PLB clock is multiplied by 4 to generate a 200 MHz clock for the CPU. A fully synchronous
system-level design is achieved by generating various clocks from the same 50 MHz clock input.

The CPU clock can run at any integer multiple of the PLB clock up to the maximum CPU clock
frequency. During reset, internal clock synchronizers in the CPU detect the phase alignment of
the PLB and CPU clocks and adjust for it automatically. The OCM clock must be divided down
from the CPU clock by an integer multiple (up to eight), and the two clocks must be synchronous
to each other. A second DCM acts independently to drive the clock input to the Rocket I/O
section. The Rocket I/O transceiver clock is set to 125 MHz to yield a 2.5-GHz serial output rate.

August 5, 2002 6

100Mhz

125Mhz

DIVClock IN

1X

2X

DCM 1

1XClock IN

DCM 2

O P B & P L B

O C M & D C R

CPU

Rocket IO
Ref_Clk

50Mhz

100Mhz

200Mhz

Rocket IO
User_Clk

IBUFG

Figure 2 - Clock Generation

2.7 PPC Reference Design Reset
After a system reset or at FPGA startup, the FPGA is held in reset until the DCM has locked onto
its reference clock. Once the DCM is locked and the clocks remain stable for several cycles (may
take several microseconds in simulation), the reset condition is released to allow the system logic
to begin operating. (For example, the CPU will begin fetching instructions a few cycles after reset
is released.) Since the reset net is a high-fanout signal, it may not be able to reach all the logic in
the design within one clock cycle. User IP blocks should be designed to take into account the
possible skew in the global reset and still start up properly. Alternatively, the global reset can be
registered locally in each IP block to generate a synchronous reset signal.

The design implements the three levels of reset supported by the PPC405:

• Core reset
• Chip reset
• System reset

The core reset only affects the processor while the chip reset clears all the logic on the FPGA.
The system reset is designed to reset the entire system including the FPGA and external devices
connected to the FPGA. The CPU provides an internal special-purpose register that allows
software to request that one of the three resets be performed.

August 5, 2002 7

The following figure shows how the reset logic in the PPC Reference Design is implemented. The
chip and core reset request lines from the CPU are driven to the corresponding reset nets
through shift registers to ensure that minimum pulse width requirements are met. The system
reset request line from the CPU drives an external pin as an open-drain signal (with resistive
pullup) so that other external devices can sense or drive the system reset (sys_rst_n). Note that
the system reset has the effect of resetting the DCMs in the FPGA, while the chip reset does not
affect the DCMs. The reset logic in the PPC Reference Design is an example implementation of
the PPC405 reset architecture. Designers should set the scope, boundaries, and effects of resets
as appropriate to their designs. It should be noted that the sys_rst_n signal is connected to the
CPU RESET Push Button Switch on the Virtex-II Pro development board.

C405RSTCORERESETREQ

Debounce RSTC405RESETSYS

RSTC405RESETCHIP

RSTC405RESETCORE

C405RSTCHIPRESETREQ

C405RSTSYSRESETREQ

Pulse-Width
Extender

Pulse-Width
Extender

RST

LOCKED

pullup

SYS_RST_N

.

To FPGA logic

Virtex-II Pro FPGA

Figure 3 - Reset Generation

August 5, 2002 8

3 PPC Reference Design Memory Map

This section diagrams the system memory map for the PPC Reference Design. All memory and
I/O devices that reside on the PLB. OPB, and OCM busses are mapped into the 4G address
space of the processor. The memory map reflects the default location of the system devices as
defined in the global_params.v file.

3.1 PLB Memory Map
The following tables show the devices located on the PLB. Although 32M of address space is
allocated to the FLASH and SRAM that are located on the optional P160 module, only 8M of
physical FLASH and 1M of physical SRAM is available on this module (32M of address space is
allocated to these memory devices in order to reduce the number of address bits that are
required to generate their associated chip selects).

Table 1 - PLB Memory Map

Address Range Size Usage
0x00000000 – 0x01FFFFFF 32M SRAM (1M of SRAM)
0x02000000 – 0x03FFFFFF 32M FLASH (8M of Flash)
0x04000000 – 0x7FFFFFFF 2085M Unused
0x80000000 – 0xEFFFFFFF 1877M PLB-OPB Bridge (OPB memory space)
0xF0000000 – 0xF3FFFFFF 67M Unused
0xF4000000 – 0xF4001FFF 8K DSBRAM (Dual-Port RAM for the Packet Processor)
0xF4002000 – 0xFFFF7FFF 201M Unused
0xFFFF8000 – 0xFFFFFFFF 32K PLB BRAM

Table 2 - OPB Memory Map

Address Range Size Usage
0x80000000 – 0x8FFFFFFF 268M Unused
0x90000000 – 0x90000007 8B GPIO (32-bit GPIO Port)
0x90000008 – 0xA0000FFF 268M Unused
0xA0001000 – 0xA000101F 32B UART1 (located on the main board)
0xA0001020 – 0xA0010FFF 2K Unused
0xA0011000 – 0xA001101F 32B UART2 (located on the P160 module)
0xA0011020 – 0xBFFFFFFF 536M Unused
0xC0000000 – 0xC0000007 8B LCD (located on the main board)
0xC0000008 – 0xEFFFFFFF 805M Unused

3.2 DCR Memory Map
The device-control register (DCR) interface provides a mechanism for the processor block to
initialize and control peripheral devices that reside on the same FPGA chip. For example, the
memory-transfer characteristics and address assignments for a bus -interface unit (BIU) can be
configured by software using DCR. The DCR is accessed using the PowerPC mfdcr and mtdcr
instructions and it consists of the following:

• A 10-bit address bus.
• Separate 32-bit input and output data busses.
• Separate read and write control signals.
• A read/write acknowledgement signal.

August 5, 2002 9

Because the processor block is the only bus master on the bus, the address bus is driven by the
processor block and received by each peripheral containing DCR. The read and write control
signals are also distributed to each DCR peripheral.

Table 3 - DCR Bus Memory Map

Address Range Size Usage
0x01A – 0x01B 2B DSOCM
0x200 – 0x20F 16B Packet Processing Engine (PPE)

4 PPC Reference Design GPIO Port

A 32-bit GPIO port is implemented in order to provide user interface to the on-board DIP
Switches, Push Button Switches, and LEDs. The following table shows how the GPIO bits are
utilized for this reference design.

Table 4 - GPIO Port Description

GPIO Bit Direction Usage

0 Input User DIP Switch 1
1 Input User DIP Switch 2
2 Input User DIP Switch 3
3 Input User DIP Switch 4
4 Input User DIP Switch 5
5 Input User DIP Switch 6
6 Input User DIP Switch 7
7 Input User DIP Switch 8
8 Input Unused
9 Input Unused

10 Input Unused
11 Input Unused
12 Input User Push Button Switch 3
13 Input User Push Button Switch 2
14 Input User Push Button Switch 1
15 Input P160 FLASH BY/RY Signal
16 Output Unused
17 Output Unused
18 Output Unused
19 Output Unused
20 Output Unused
21 Output Unused
22 Output Unused
23 Output P160 FLASH Reset Signal
24 Output Unused
25 Output Unused
26 Output Unused
27 Output Unused
28 Output User LED4
29 Output User LED3
30 Output User LED2
31 Output User LED1

August 5, 2002 10

5 PPC Reference Design HDL Organization

The following figure shows the organization of the higher-level HDL files that comprise the system
and test bench environment.

All of the peripherals, the memory controllers, and the CoreConnect infrastructure are instantiated
in the ip_wrapper.v file. The external I/O signals, the clock/reset connections, and the processor
block connections are propagated up to the top-level file, top.v. The processor block, clock/reset
logic, Rocket I/O transceivers, and the ip_wrapper.v file are instantiated in the top.v file. The
module ports of top.v represent the external I/O signals of the FPGA. Therefore, all files in the
hierarchy from the top.v level and below make up the Virtex-II Pro FPGA design that is
synthesized and routed into an FPGA.

For simulation, the file testbench.v instantiates the FPGA as the device under test and includes
behavioral models for the FPGA to interact with. In addition to behavioral models for clock
oscillators, and external peripherals, the test bench also instantiates the CoreConnect bus
monitors to observe the PLB, OPB, and DCR buses for protocol violations. The sim_params.v
file is designed to be modified by the user to customize various simulation options. These options
include message display options, maximum simulation time, and clock frequency. The user
should edit this file to reflect personal simulation preferences.

An additional HDL file, called global_params.v, defines the global constants and parameters
used throughout the reference design. This information may include, memory map definitions,
device configuration values, or any other information that is better organized in a global context.

Some of the test bench code is used to access signals internal to the design using hierarchy path
names to reach into the design without changing any of the port interfaces. It is important that the
design source files used for simulation match the source files for synthesis. Therefore, port
interfaces should not be different or else inconsistencies can result.

August 5, 2002 11

PPC

PLB-OPB,
OPB-PLB

Bridge

64-bit PLB
Memory

Controller

BRAM
(32K)

LCD
Interface

UART1

UART2

LCD
Panel

Terminal

Terminal

PLB
Bus

OPB
Bus

PLB
ARB

OPB
ARB

ISPLB

DSPLB

BRAM
(8K)

Packet
Processing

Engine
DSOCM

DCR

Rocket
I/O

PLB
Monitor

OPB
Monitor

DCR
Monitor

32-bit PLB
Flash/SRAM
Controller

8MB Flash
1MB SRAM

GPIO

User DIP
Switch

User
LED

SMA
Connectors

ip_wrapper.v

top.v

testbench.v

clk_rst_startup.v
(Clock & Reset)

PPCJTAG.v
(PPC405 JTAG Port)

User PB
Switch

Figure 4 - HDL Organization

August 5, 2002 12

The following table shows the Verilog modules that are included in the wrapper file and it also
provides a brief description for each file.

Table 5 - PPC Reference Design IP Wrapper File

File Name Description
arbiter.v PLB Arbiter is used by various maters on the PLB to gain control of the

PLB. For the PPC Reference Design, there are 3 masters, the ISPLB,
DSPLB, and OPB-PLB Bridge.

opb_arbiter.v OPB Arbiter is used to gain access to the OPB bus. For the PPC
Reference Design, CPU uses the arbiter (via the PLB) to access
devices that reside on the OPB bus.

plb_bus_logic.v OR logic for the PLB is used to combine the signals from slaves that
reside on the PLB bus.

opb_bus_logic.v OR logic for the OPB is used to combine the signals from slaves that
reside on the OPB bus.

plb_bram_cntlr.v 64-bit PLB Memory Controller is used to interface to the PLB BRAM
(32K).

plb2opb_bgo.v PLB-OPB Bridge is used to access devices on the OPB bus
bram_block.v Wrapper file for the PLB BRAM and it is used to instantiate

RAMB16_S4 BlockRAMs to build the 32K bytes of the PLB BRAM.
opb_gpio_top.v GPIO source file
plb_sram_flash_interface_top.v Top-level module for the 32-bit PLB Flash/SRAM Controller. This

module is used to access the 8M Flash and 1M SRAM that reside on
the PLB.

opb_lcd_cntlr_top.v LCD Controller source file
opb2plb_bgi.v OPB-PLB Bridge is used by OPB masters to gain control of the

devices that reside on the PLB bus.
opb_uart16450_eval.v UART 16450 Wrapper file
opb_uart16550_eval.v UART 16550 Wrapper file
DS_bram_wrap.v Wrapper file for the PLB BRAM and it is used to instantiate

RAMB16_S9_S9 BlockRAMs to build the 8K bytes of the DSBRAM.
PPE.v Packet Processing Engine source file
pkt_proc_dcr_module.v Packet Processing Engine DCR source file

The following table shows the Verilog modules that are instantiated in the top-level file and it also
provides a brief description for each file.

Table 6 - PPC Reference Design Top Level File

File Name Description
ip_wrapper.v Wrapper file containing the devices connected to the PLB, OPB, DCR,

and OCM busses.
PPC405.v PowerPC Core Wrapper file
clk_rst_startup.v Clock and Reset
PPCJTAG.v CPU JTAG that can be connected to the FPGA JTAG pins (the other

option would be to connect the CPU JTAG pins to general purpose
FPGA I/O pins.

GT_CUSTOM.v Verilog Module declaration for the Rocket I/O SERDES (CUSTOM
configuration mode).

August 5, 2002 13

The following table shows the Verilog modules that are instantiated in the testbench file and it
also provides a brief description for each file.

Table 7 - PPC Reference Design Test Bench File

File Name Description
top.v PPC Reference Design Top Level File
plb_monitor3x.v PLB Bus Monitor
dcr_monitor.v DCR Bus Monitor
opb_monitor.v OPB Bus Monitor
LCD behavioral model Behavioral Model for the LCD Panel
UART behavioral model Behavioral Model for the UART Panel

6 PPC Reference Design Software Source Files

The source files needed to do a complete firmware build are located in
C:/Memec_Desgin_V2Pro_Board directory. The following table gives a brief overview of what
each source file is for. Include files are located in C:/Memec_Desgin_V2Pro_Board /includes
directory.

Table 8 - Software Source Files

File Name Description
boot.s Contains a single instruction jumps to _start in crt0.S for

reset vector (0xFFFFFFFC). The boot section is mapped to
the reset vector during linking.

eabi.s Contains code to initialize the EABI environment (i.e., setting
the
registers R2 and R13 to the correct values). The compiler
inserts a call to _eabi at the beginning of the main() function.

crt0.s Contains code to initialize the .bss and .sbss data sections
and to set up the stack. This file also contains code to initialize
processor features listed in the Initialization section.

data.c Contains functions for packet processing, UART, LCD, and
GPIO. Also contains device driver functions to initialize and
test the Packet Processing Engine hardware.

initialize.c Contains function calls to initialize all of the high-speed serial
hardware, UART, LCD, and GPIO.

Memec_Desgin_V2Pro_Board.c Contains the main() function and declares global variables
used by all modules.

ppc-asm.h Contains register defines specific to the PPC405.
includes.h Includes all other .h files and it is present in all .c files.

Contains defines and macros for all modules. Also, contains
extern global variable declarations.

data.h Contains extern function declarations for functions used by
other
modules.

initialize.h Contains extern function declarations for functions used by
other
modules.

August 5, 2002 14

makefile Builds the PPC Reference Design application.
mapfile The mapfile is the linker script file. It defines the memory map

and how sections are mapped within memory.

7 Simulation and Verification

7.1 SWIFT and BFM CPU Models
The PPC Reference Design demonstrates two different simulation methods to help verify designs
using the PPC405 CPU. One method uses a full simulation model of the CPU based on the
actual silicon. The second method employs bus functional models (BFMs) to generate processor
bus cycles from a command scripting language. These two methods offer different trade-offs
between behavior in real hardware, ease of generating bus cycles, and the amount of real time to
simulate a given clock cycle.

A SWIFT model can be used to simulate the CPU executing software instructions. In this
scenario, the executable binary images of the software are preloaded into memory from which the
CPU can boot up and run the code. Though this is a relatively slow way to exercise the design, it
more accurately reflects the actual behavior of the system.

The SWIFT model is most useful for helping to bring up software and for correlating behavior in
real hardware with simulation results. The PPC Reference Design demonstrates the SWIFT
model simulation flow, by allowing the user to write a C program that is compiled into an
executable binary file. This executable (in ELF format) is then converted into BRAM initialization
commands using a tool called Data2BRAM (Note that Data2BRAM can also generate memory
files for the Verilog command readmemh to initialize other memories such as SRAM or DDR
memory).

When a simulation begins and reset is released, the CPU SWIFT model fetches the instructions
from BRAM (which is mapped to the boot vector) and begins running the program. The user can
then observe the bus cycles generated by the CPU or any other signal in the design. For
debugging purposes, the values of the CPU's internal program counter, general-purpose
registers, and special-purpose registers are available for display during simulation.

Generating a desired sequence of bus operations from the CPU may require a lot of software
setup or simulation time. For early hardware bring-up or IP development, a bus functional model
can be used to speed up simulation cycles and avoid having to write software. A model of the
CPU is available in which two PLB master BFMs and one DCR BFM are instantiated to drive the
CPU's PLB/DCR ports. These BFMs are provided in the CoreConnect toolkits and allow the user
to generate bus operations by writing a script written in the Bus Functional Language (BFL). The
PPC Reference Design provides a sample BFL script that exercises many of the peripherals in
the system. Refer to the CoreConnect Toolkit documentation for more information.

Since the CPU SWIFT model and BFM model both have the same set of port interfaces, users
can switch between the two simulation methods by compiling the appropriate set of files without
having to modify the system's design source files. Users may, however, need to modify their test
benches to take into account which model is being used.

7.2 Behavioral Models
The PPC Reference Design includes some behavioral models to help exercise the devices and
peripherals in the FPGA. Many of these models are freely available from various manufacturers

August 5, 2002 15

and include interface protocol-checking features. The behavioral models and features included in
the reference design are:

• Pull-ups connected to the GPIO for reading and driving outputs without getting unknown
values

• Terminal interface connected to the UARTs for sending and receiving serial data
• The terminal allows a user to interact with the simulation in real time

o Characters sent out by the UARTs are displayed on a terminal while characters
typed into the terminal program are serialized and sent to the UARTs

o A simple file I/O mechanism passes data between the hardware simulator and
the terminal program

• LCD model that implements some registers that the LCD controller can write to and read
back from

o It does not decode the control register commands to display the characters sent
to the LCD

o A terminal program similar to the UART terminal is provided to display characters
written to the LCD

• A Rocket I/O packet processor module

8 Synthesis and Implementation

The PPC Reference Design can be synthesized and placed/routed into a Virtex -II Pro FPGA. A
basic set of timing constraints for the design is provided to allow the design to go through place
and route. Note that some peripherals in the design are pre-synthesized and provided only in net
list format (.edf, .edn, .ngc, .ngo). For these devices, a corresponding black box has been
instantiated in the source code to force the synthesis tool to leave a placeholder for the netlist.
After a successful place and route, it is possible to run a simulation of the design using a back-
annotated timing model of the FPGA with a SWIFT or BFM version of the processor block.

9 Design Flow Environment

A flow engine provides an environment to help manage the design flow for the PPC Reference
System. This engine uses the utility program called make and a set of PERL scripts to allow the
user to perform tasks, such as running simulations, synthesizing a design, or implementing it on
an FPGA with a simple set of commands. The design flow tool is implemented with a generic
architecture to allow it to be adapted for use on a variety of different designs.

10 PPC Reference Design File Listings

The files and directories specific to the PPC Reference Design are located below the
$V2PRO/platforms/ Memec_Design_V2Pro_Board directory, shown in the following figure, and
listed in the tables that follow. Source files for the IP modules and software applications are kept
in the $V2PRO/source directory. The $V2PRO/source directory generally contains files that can
be shared by different designs. The File Structure for the PPC Reference System section
diagrams the full file directory structure for this design. Refer to the appropriate instructions for
installation and setup information. Note that the following tables only list files in the
$V2PRO/platforms/ Memec_Desgin_V2Pro_Board directory that are present after installation.
After running simulation, synthesis, or place and route, additional files may be created. Directory
path names are shown separated by the "/" character as is the UNIX convention. For Windows,
the "\" should be used to separate directory paths.

August 5, 2002 16

syn sys parsim

Memec_Design_V2Pro_Board

v2p mem veri log v2pbfl func_sim ba_sim testbench

veri log

Figure 5 - PPC Reference Design Directory Structure

Table 9 - Files in $V2PRO/platforms/ Memec_Design_V2Pro_Board

File Description
Makefile Redirection file to allow the centralized design flow scripts to be

invoked from different locations. The centralized design flow
script (flow.mk) is located in the
$V2PRO/tools/cygwin/xilinx/data directory

flow.cfg File used to configure the design flow scripts

10.1 Using the makefile and flow.cfg Files
The makefile located in the Memec_Design_V2Pro_Board directory is used as a redirection file to
point to the centralized design flow script (flow.mk) that is located in the
$V2PRO/tools/cygwin/xilinx/data directory. The flow.cfg file is used to configure the flow.mk script
for the PPC Reference Design. The following figure shows a graphical representation of the
relationship between the flow.cfg and makefile files and the flow.mk script.

August 5, 2002 17

f low.mk script
(located in the $V2PDK/tools/cygwin/xil inx/data)

flow.cfg
(configures the flow.mk script and it

is located in the
Memec_Design_V2Pro_Board

Directory)

makefi le
(redirection fi le located in the

Memec_Design_V2Pro_Board Directory)

Figure 6 - makefile and flow.cfg Usage

Table 10 - Files in $V2PRO/platforms/ Memec_Design_V2Pro_Board /sys

File Description

bram_init.bmm

Data2BRAM configuration file describing the system memory
devices

10.2 The bram_init.bmm File
The bram_init.bmm describes the system memory and it is used by the DATA2BRAM program to
initialize the PLB BRAM and also the DSBRAM. The PLB BRAM is a 64-bit memory block that
resides in the 0xFFFF8000 – 0xFFFFFFFF memory space, while the DSBRAM is a 32-bit
memory block that is located in the 0xF4000000 – 0xF4001FFF memory space. The content of
the bram_init.bmm file for the PPC Reference Design is shown below.

ADDRESS_BLOCK plb_bram_controller RAMB16 [0xFFFF8000:0xFFFFFFFF]
 BUS_BLOCK
 ip_wrapper/bram_block/block_ram0 [63:60];
 ip_wrapper/bram_block/block_ram1 [59:56];
 ip_wrapper/bram_block/block_ram2 [55:52];
 ip_wrapper/bram_block/block_ram3 [51:48];

 ip_wrapper/bram_block/block_ram4 [47:44];
 ip_wrapper/bram_block/block_ram5 [43:40];
 ip_wrapper/bram_block/block_ram6 [39:36];
 ip_wrapper/bram_block/block_ram7 [35:32];

 ip_wrapper/bram_block/block_ram8 [31:28];
 ip_wrapper/bram_block/block_ram9 [27:24];
 ip_wrapper/bram_block/block_ram10 [23:20];
 ip_wrapper/bram_block/block_ram11 [19:16];

 ip_wrapper/bram_block/block_ram12 [15:12];
 ip_wrapper/bram_block/block_ram13 [11:8];

August 5, 2002 18

 ip_wrapper/bram_block/block_ram14 [7:4];
 ip_wrapper/bram_block/block_ram15 [3:0];
 END_BUS_BLOCK;
END_ADDRESS_BLOCK;

ADDRESS_BLOCK dsocma RAMB16 [0xF4000000:0xF4001FFF]
 BUS_BLOCK
 ip_wrapper/DSBRAM/u3 [31:24];
 ip_wrapper/DSBRAM/u2 [23:16];
 ip_wrapper/DSBRAM/u1 [15:8];
 ip_wrapper/DSBRAM/u0 [7:0];
 END_BUS_BLOCK;
END_ADDRESS_BLOCK;

Table 11 - Files in $V2PRO/platforms/ Memec_Desgin_V2Pro_Board /sys/verilog

File Description
src.lst List of source files used in the PPC Reference Design
bram_block.v Wrapper file for the BRAM connected to the PLB
global_params.v Cent ralized location for the global parameters used within the

design
clk_rst_startup.v Clock, reset, and startup logic for the PPC Reference Design
plb_sram_flash_interface_top.v Top-level module for the 32-bit PLB Flash/SRAM Controller.

This module is used to access the 8M Flash and 1M SRAM
that reside on the PLB.

sram_flash_interface_core.v Core module for the 32-bit PLB Flash/SRAM Controller.
ip_wrapper.v Wrapper file containing the devices connected to the PLB,

OPB, DCR, and OCM busses
opb_bus_logic.v OR logic for the OPB
plb_bus_logic.v OR logic for the PLB
top.v Top-level file for the PPC Reference Design

10.3 The src.lst File
The src.lst is a list of all source files used in the PPC Reference Design. The following shows a
section of this file for the PPC Reference Design.

• Modules Connected to PLB
$V2PRO/source/hw/verilog/plb_arbiter/src.lst;
$V2PRO/source/hw/verilog/plb_bram_cntlr/src.lst;
$V2PRO/source/hw/verilog/ipif_slv_sram_simple/src/plb_ipif_slv_sram.v;
$V2PRO/source/hw/verilog/plb2opb_bgo/src.lst;
$V2PRO/source/hw/verilog/opb2plb_bgi/src_bgi_simple.lst

• Modules Connected to OPB

$V2PRO/source/hw/verilog/opb_arb/src.lst;
$V2PRO/source/hw/verilog/ipif_slv_sram_simple/src/opb_ipif_slv_sram.v;
$V2PRO/source/hw/verilog/gpio/src.lst;

August 5, 2002 19

$V2PRO/source/hw/verilog/lcd_cntlr/src.lst;
$V2PRO/source/hw/verilog/uart/src_16450_eval.lst;
$V2PRO/source/hw/verilog/uart/src_16550_eval.lst;

10.4 The global_param.v File
The global_param.v file is a centralized location for the global parameters used within the PPC
Reference Design. A section of this file is given below that shows the base address for the PLB
BRAM, PLB FLASH/SRAM, LCD Controller, and the GPIO.

// PLB BRAM, 17 address bits are used in the address decoding
`define PLB_S0_BASE_ADDR 32'hffff_8000
`define PLB_S0_LSB_ADDR 16

// PLB FLASH and SRAM, 6 address bits are used in the address decoding
`define PLB_S2_BASE_ADDR 32'h70000000
`define PLB_S2_LSB_ADDR 5

// LCD base address
`define OPB_S1_AddrBase 32'hC000_0000

// GPIO base address
`define OPB_S2_AddrBase 32'h9000_0000

Table 12 - Files in $V2PRO/platforms/ Memec_Desgin_V2Pro_Board /sim/func_sim

File Description
Uart1.input Character to be sent to UART 1 from the terminal (set first line to

"@0 0" for no input)
Uart2.input Character to be sent to UART 2 from the terminal (set first line to

"@0 0" for no input)
wave.do MTI command to display a sample set of interesting signals for

functional simulation

Table 13 - Files in $V2PRO/platforms/ Memec_Desgin_V2Pro_Board /sim/bfl

File Description
test_Memec_Desgin_V2Pro_Board_ref_des.bfl Sample BFL script to exercise the devices in

the system during functional simulation

10.5 Bus Functional Language
Bus Functional Language is used for functional simulation of the PPC Reference Design. Simple
memory commands are performed to access devices located on the PLB, OPB, and DCR
busses. The following shows a section of the test_Memec_Desgin_V2Pro_Board_ref_des.bfl file
that demonstrates how the BRAM on the PLB bus is tested. For more information on BFL, please
refer to the CoreConnect Tool Kit documentation.

August 5, 2002 20

set_device (path=/testbench/top/PPC405/M_DCU,device_type=plb_master)
 configure (msize=01) // 64 Bit DCU Master
 mem_update(addr=FFFFF040, data=0123_4567_89ab_cdef)
 mem_update(addr=FFFFF048, data=fedc_ba98_7654_3210)
 mem_update(addr=FFFFF050, data=0011_2233_4455_6677)
 mem_update(addr=FFFFF058, data=8899_aabb_ccdd_eeff)
 write (addr=FFFFF040, size=0010)

// Read back and verify the data
 read (addr=FFFFF040, size=0010)
 read (addr=FFFFF060, size=0010)
 read (addr=FFFFFF80, size=0010)

Table 14 - Files in $V2PRO/platforms/ Memec_Desgin_V2Pro_Board /sim/ba_sim

File Description
Uart1.input Character to be sent to UART 1 from the terminal (set first line to

"@0 0" for no input)
Uart2.input Character to be sent to UART 2 from the terminal (set first line to

"@0 0" for no input)
wave.do MTI command to display a sample set of interesting signals for

back-annotated timing simulation

Table 15 - Files in $V2PRO/platforms/ Memec_Desgin_V2Pro_Board /sim/testbench/verilog

File Description
opb_dcl.inc OPB bus monitor configuration file set for 13 OPB devices
sim_params.v Centralized location for parameters and settings that affect the

simulation
testbench.v Testbench source file
view_reg.v Behavioral code to display internal CPU register contents

whenever they are updated (SWIFT Simulations only)

10.6 The Opb_dcl.inc File
The OPB Bus Monitor Configuration file is used to tailor the bus for a given application. The
following shows the content of the OPB Bus Monitor Configuration file for the PPC Reference
Design.

`define true 1'b1
`define false 1'b0
`define random 2'b00
`define round 2'b01
`define priority 2'b10
`define test 2'b11
`define opb_data_bus_width 64
`define opb_be_bus_width (`opb_data_bus_width / 8)
`define max_opb_devices 13
`define opb_unit_delay 2

August 5, 2002 21

`define opb_monitor_cmd_array_size 1024
`define opb_monitor_record_array_size 16
`define opb_monitor_synch_array_size 32
`define slave_cmd_array_size 2048
`define slave_check_array_size 1024
`define slave_mem_array_size 1024
`define q_max 7
`define opb_master_g_reg_array_size 32
`define master_cmd_array_size 4096
`define byte_count_max 8
`define byte_count_min 1

Table 16 - Files in $V2PRO/platforms/ Memec_Desgin_V2Pro_Board /par

File Description
top.ucf User constraints file used by FPGA implementation tools

Table 17 - Files in $V2PRO/platforms/ Memec_Desgin_V2Pro_Board /syn

File Description
synplify.opt Optional synthesis project file information

11 Instructions for Running Functional Simulations

The PPC Reference Design comes with SWIFT and BFM based simulation examples. This
section describes the necessary steps for running the functional simulations. It assumes the
Virtex-II Pro Design Kit is properly installed and that the
$V2PRO/platforms/ Memec_Desgin_V2Pro_Board/flow.cfg file is properly edited to correctly
call the user's simulation tools. The user may also modify the sim_params.v file to customize
various simulation parameters. The following figure shows a high-level view of the functional
simulation flow.

August 5, 2002 22

make
Memec_Design_V2Pro_Board

data2bram

simulator

terminal

Memec_Design_V2Pro_Board.elf

makefi le

bram_init.v

powerpc-eabi-gcc
(compiler)

powerpc-eabi-gcc
(linker)

Memec_Design_V2Pro_Board.elf

bsp.amapfi le

boot.s, crt0.s, eabi.s, data.c
Memec_Design_V2Pro_Board.c,

initialization.c

boot.o, crt0.o, eabi.o, data.o
Memec_Design_V2Pro_Board.o,

initialization.o

bram_init .bmm

Verilog IP
Cores

Memec_Design_V2PRo_Board
Verilog files

testbench.v

Figure 7 – Functional Simulation

August 5, 2002 23

11.1 SWIFT Simulations
The steps to run a SWIFT simulation are described below:

Table 18 - Instructions for Running Functional Simulations (CPU SWIFT Model)

Step Action

1

Edit the flow.cfg file:

$ cd $V2PRO/platforms/Memec_Desgin_V2Pro_Board
$ <text editor> flow.cfg

(On a Windows PC, you can use the Explorer to browse for this file and edit it.) The
<text editor> can be a program like Emacs, vi, or WordPad. Make sure that the
PPC_MODEL entry is set to "swift". Save and close the flow.cfg file.

2

Invoke the design flow engine to start the simulation:
$ make func_sim

(On a Windows PC, you can also select Start > Programs > Virtex-II Pro
Developer’s Kit > Reference Platforms > Memec_Desgin_V2Pro_Board > Make
Functional Simulation)

The flow engine begins by compiling and linking the application software (as
necessary) to generate a binary executable program file (in .elf format). The .elf file is
copied locally and the data2bram is invoked to generate the necessary BRAM
initialization command files. The simulator tool is then launched along with terminals
for the UART and LCD.

Note: For MTI, the scripts will copy a corresponding NT or Solaris version of the
modelsim.ini configuration file into the local directory. This file can be found in the
$V2PRO/tools/$V2PRO_HOST_OSTYPE/xilinx/data/modelsim.ini directory.

3

Run the simulation:

In the MTI window, type run -all. The simulator will test each UART in the system and
if the test is successful, U1 is displayed in “UART1 Terminal” and U2 is displayed in
the “UART2 Terminal”. Upon successful completion of the LCD test, “LCD” in printed
on the “LCD Terminal”. The simulator will also perform a complete loop back test of
one of the Rocket I/O ports and writes to the test result to the GPIO port.

It is normal to see some warnings from the PLB monitor or behavioral memory models
during reset, but the PLB/OPB/DCR monitors should not report any protocol errors
during simulation (warnings and notes may occur depending on the circumstances).
You can modify the sim_params.v file to stop the simulation at a desired time or
press Ctrl c (break).

11.2 BFM Simulations
The steps to run a BFM simulation are described below:

August 5, 2002 24

Table 19 - Instructions for Running Functional Simulations (BFM)

Step Action

1

Edit the flow.cfg file:

$ cd $V2PRO/platforms/Memec_Desgin_V2Pro_Board
$ <text editor> flow.cfg

(On a Windows PC, you can use the Explorer to browse for this file and edit it.) The
<text editor> can be a program like Emacs, vi, or WordPad. Make sure that the
PPC_MODEL entry is set to "swift". Save and close the flow.cfg file.

2

Invoke the design flow engine to start the simulation:
$ make func_sim

(On a Windows PC, you can also select Start > Programs > Virtex-II Pro
Developer’s Kit > Reference Platforms > Memec_Desgin_V2Pro_Board > Make
Functional Simulation)

The flow engine begins by compiling and linking the application software (as
necessary) to generate a binary executable program file (in .elf format). The .elf file is
copied locally and the data2bram is invoked to generate the necessary BRAM
initialization command files. The simulator tool is then launched along with terminals
for the UART and LCD.

3

Run the simulation:

In the MTI window, type run -all. The simulator will test each UART in the system and
if the test is successful, “Testing Uart 1” is displayed in “UART1 Terminal” and
“Testing Uart 12” is displayed in the “UART2 Terminal”. Upon successful completion
of the LCD test, “Testing LCD” in print ed on the “LCD Terminal”. The simulator will
also perform a loop back test of one of the Rocket I/O ports.

The simulation stops when the BFL script is finished executing or when an error
occurs. If the simulation completes successfully, the simulator displays the following
message:

Synch 31 received… Simulation Completed

If an error is detected due to a protocol violation reported by a bus monitor or a read
comparison error, the simulation stops and an error message is displayed.
It is a useful exercise to view the simulator's waveform display and correlate the
commands in the .bfl script with the bus transaction waveforms over PLB, OPB, and
DCR.

12 Instructions for Synthesizing the Design

The PPC Reference Design can be synthesized into FPGA primitive components. This section
describes the necessary steps for synthesizing the design using the Synplify synthesis tool. It
assumes the Virtex-II Pro™ Design Kit is properly installed and that the $V2PRO/platforms/
Memec_Desgin_V2Pro_Board /flow.cfg file has been properly edited to correctly call the user's
synthesis tool. The following figure shows a high-level view of the synthesis flow.

August 5, 2002 25

genscript

flow.cfg

makefile

sys/verilog/src.lst

syn/nplify.opt

syn/v2p/synth_defs.v

syn/v2p/top.prj

$(SYN_CMD)

source files: *.v syn/v2p/top.edf
syn/v2p/top.ncf

make synth

Figure 8 – Synthesis

Table 20 - Instructions for Synthesizing the Design

Step Action

1

Invoke the design flow engine to start the synthesis:

$ cd $V2PRO/platforms/Memec_Desgin_V2Pro_Board
$ make synth
(On a Windows PC, you can also select Start > Programs > Virtex-II Pro
Developer’s Kit > Reference Platforms > Memec_Desgin_V2Pro_Board > Make
Synthesis.)

This script creates a project file for the synthesis tool and invokes it. For Synplify, the
GUI is launched.

2

If using Synplify, click the Run button to start the synthesis process.
Note: Any changes saved to the Synplify project file (top.prj) will be overwritten the

August 5, 2002 26

next time "make synth" is called. You should transfer any changes in the project file to
the synplify.opt file.

3

After completion, close the Synplify GUI.

You can edit the $V2PRO/platforms/ Memec_Desgin_V2Pro_Board
/syn/synplify.opt file to add or modify any of the synthesis options. You can also edit
the
$V2PRO/platforms/ Memec_Desgin_V2Pro_Board /flow.cfg file to change the
target part. (The default part is xc2vp4fg456-7).

13 Instructions for FPGA Implementation

After synthesis, The PPC Reference Design can be targeted into an FPGA using the Xilinx
implementation tools. This section describes the necessary steps for implementing the design. It
assumes the Xilinx ISE software is properly installed. The following figure shows a high-level view
of the implementation flow.

August 5, 2002 27

sys/bram_init .bmm

makefile

sys/verilog/src.lst

flow.cfg

sys/mem/bram_init .ucf

genscript

Other IP: *.edf, *.ngo, *.ncf

par/v2p/*.edf
par/v2p/*.ncf
par/v2p/*.ngo

par/v2p/top.ucf

make fpga

$(SW_MAKE)
sys/

Memec_Design_V2Pro_Board.elf

sys/par/top.ucf

data2bram

genscript

ngbuild

par/v2p/top.ngd

par/<v2p/top_unroute.pcf

map

par/v2p/top_unroute.ncd
par/v2p/top_unroute.ngm

par

par/v2p/top.ncd

trce

par/v2p/top.twr

Figure 9 – Implementation

August 5, 2002 28

Table 21 - Instructions for Implementing the Design

Step Action

1

Invoke the design flow engine to start the implementation process:

$ cd $V2PRO/platforms/ Memec_Desgin_V2Pro_Board
$ make fpga

(On a Windows PC, you can also select Start > Programs > Virtex-II Pro
Developer’s Kit > Reference Platforms > Memec_Desgin_V2Pro_Board > Make
FPGA).

The script then copies the synthesis output files to the
$V2PRO/platforms/ Memec_Desgin_V2Pro_Board /par/v2p directory and runs
through the implementation tools (ngdbuild, map, par, trce). Any necessary net lists
(.edf , .edn , .ngc , .ngo) for devices in the system are also copied in for ngdbuild to
process. The timing constraints used by the implementation tools are copied from
$V2PRO/platforms/ Memec_Desgin_V2Pro_Board /par/top.ucf along with any
BRAM initialization commands passed in from data2bram.

2

With a successfully routed design, you can generate a bitstream:

$ cd $V2PRO/platforms/ Memec_Desgin_V2Pro_Board
$ make bit

This generates a bitstream for the targeted Virtex-II Pro™ device. Note that the
UART Core is only an evaluation version with a fixed functionality. It will timeout and
become non-functional 240 clock cycles after the FPGA is configured.

14 Instructions for Running Back-Annotated Timing Simulations

A placed and routed FPGA design can be simulated with full timing back-annotation. This section
describes the necessary steps for simulating the back-annotated design using SWIFT model of
the processor block. In general, the steps are identical to those of a functional simulation except
that the "make ba_sim" command is used. The following figure shows a high-level view of the
back-annotated timing simulations flow.

August 5, 2002 29

sys/bram_init .bmm

makefile

sys/verilog/src.lst

flow.cfg

sys/mem/bram_init .v

genscript

modelsim. ini
mti_sim.do

make ba_sim

$(SW_MAKE)
sys/

Memec_Design_V2Pro_Board.elf

data2bram

genscript

ngdanno sim/ba_sim/top.nga

ngd2ver

sim/ba_sim/top.v
sim/ba_sim/top.sdf

$(BA_SIM_EXE)

$(SIM_CMD)

sim/ba_sim/ba_sim_defs.v,
sim/ba_sim/compile_ver.f

sim/ba_sim/sim.f

sim/ba_sim/top.ncd
sim/ba_sim/top_unroute.ngm

Figure 10 - Back-Annotated Timing Simulations

14.1 SWIFT Simulations
The steps to run a SWIFT simulation are described below:

August 5, 2002 30

Table 22 - Instructions for Running Back-Annotated Timing Simulations

Step Action

1

Go to the main directory of the design and edit the flow.cfg to set the processor block
model:

$ cd $V2PRO/platforms/ Memec_Desgin_V2Pro_Board
$ <text editor> flow.cfg

(On a Windows PC, you can use the Explorer to browse for this file and edit it.)
Make sure that PPC_MODEL = swift. After editing the flow.cfg file, save it.

2

Invoke the design flow engine to start the simulation:

$ make ba_sim
(On a Windows PC, you can also select Start > Programs > Virtex-II Pro
Developer’s Kit > Reference Platforms > Pro_Board > Make Timing Simulation)

The flow engine compiles/links the software, runs data2bram, and invokes the Xilinx
tools for back-annotation (ngdanno, ngd2ver). It then launches the simulator tool
along with terminals for the UART and LCD.

3

Run the simulation:

In the MTI window, type run -all. The simulator will test each UART in the system and
if the test is successful, U1 is displayed in “UART1 Terminal” and U2 is displayed in
the “UART2 Terminal”. Upon successful completion of the LCD test, “LCD” in printed
on the “LCD Terminal”. The simulator will also perform a complete loop back test of
one of the Rocket I/O ports and writes to the test result to the GPIO port.

15 Flash and SRAM Interface IP Core (IPIF Application)

The Intellectual Property InterFace (IPIF) is designed to ease the creation of new IP, as well as
the integration of existing IP into the Virtex-II Pro based designs. This section describes how IPIF
can be used to interface the 32-bit Flash and SRAM that reside on the Memec Design P160
module to the PowerPC processor via the PLB bus.

Intellectual Property InterFace (IPIF) modules simplify the development of CoreConnect™
devices. The IPIF converts complex system buses, such as the PLB or OPB, into common
interfaces, such as an SRAM protocol or a control register interface. This makes IPIF modules
ideal for quickly developing new bus peripherals, or converting existing IP to work in a
CoreConnect bus-based system. The IPIF modules provide point-to-point interfaces using simple
timing relationships and very light protocols.

The IPIF is designed to be bus-agnostic. This allows the back-end interface for the IP to remain
the same while only the bus interface logic in the IPIF is changed. It therefore provides an
efficient means for supporting different bus standards without change to the IP device.

The PPC Reference Design utilizes the SRAM Protocol IPIF to interface the Flash/SRAM IP core
to the PLB bus. The following figure shows how this core is connected to the SRAM Protocol
IPIF.

August 5, 2002 31

flash_sram_data[0:31]SYS_plbClk

SYS_plbReset

PLB_PAValid

PLB_busLock

PLB_masterID

PLB_RNW

PLB_BE

PLB_size

PLB_type

PLB_MSize

PLB_compress

PLB_guarded

PLB_ordered

PLB_lockErr

PLB_abort

PLB_ABus

Sl_addrAck

Sl_wait

Sl_SSize

Sl_rearbitrate

Sl_MBusy

PLB_SAValid
PLB_rdPrim

PLB_wrPrim

PLB_wrDBus

PLB_wrBurst

PLB_rdBurst

Sl_wrDAck

Sl_wrComp

Sl_wrBTerm

Sl_rdDBus

Sl_rdWdAddr

Sl_rdDAck

Sl_rdComp

Sl_rdBTerm

Sl_MErr

flash_sram_addr[0:22]

flash_sram_ben[0:3]

flash_sram_oen

flash_sram_wen

sram_csn

flash_csn

Bus2IP_Addr
Bus2IP_BE

Bus2IP_Clk

Bus2IP_Data

Bus2IP_RdReq

Bus2IP_Reset

Bus2IP_SRAM_CE

Bus2IP_WrReq

IP2Bus_Data

IP2Bus_Error

IP2Bus_RdAck

IP2Bus_Retry

IP2Bus_ToutSup

IP2Bus_WrAck

plb_ipif_slv_sram.v flash_sram_interface_core.v

P
L

B

Table 23 - Flash and SRAM Interface IP Core

August 5, 2002 32

15.1 Flash and SRAM Read Cycle
The following figure shows the Flash and SRAM read cycle using the SRAM protocol IPIF. The
read cycle begins when the IPIF asserts the BUS2IP_RdReq signal along with the
Bus2IP_SRAM_CE signal on the rising edge of the BUS2IP_Clk. Upon activation of these
signals, the Flash/SRAM Interface Core returns the IP2BUS_RdAck after 11 BUS2IP_Clk clocks.
The Flash/SRAM Interface Core adds sufficient number of wait states into the read cycle to meet
the timing requirements of the 90ns Flash/SRAM located on the Virtex-II Pro development board.

BUS2IP_Clk

BUS2IP_RdReq

BUS2IP_SRAM_CE

IP2BUS_RdAck

flash_sram_addr

flash_csn/
sram_csn

flash_sram_oen

flash_sram_data

Figure 11 - Flash and SRAM Read Cycle

15.2 Flash and SRAM Write Cycle
The following figure shows the Flash and SRAM write cycle using the SRAM protocol IPIF. The
write cycle begins when the IPIF asserts the BUS2IP_WrReq signal along with the
Bus2IP_SRAM_CE signal on the rising edge of the BUS2IP_Clk. Upon activation of these
signals, the Flash/SRAM Interface Core returns the IP2BUS_WrAck after 11 BUS2IP_Clk clocks.
The Flash/SRAM Interface Core adds sufficient number of wait states into the write cycle to meet
the timing requirements of the 90ns Flash/SRAM located on the Virtex-II Pro development board.

August 5, 2002 33

BUS2IP_Clk

BUS2IP_WrReq

BUS2IP_SRAM_CE

IP2BUS_WrAck

flash_sram_addr

flash_csn/
sram_csn

flash_sram_wen

flash_sram_data

Figure 12 - Flash and SRAM Write Cycle

