
1

COMP 249 Advanced Distributed Systems
Multimedia Networking

http://www.cs.unc.edu/~jeffay/courses/comp249f99

The Video Data Type
Coding & Compression Basics

Kevin Jeffay
Department of Computer Science

University of North Carolina at Chapel Hill
jeffay@cs.unc.edu
September 7, 1999

2

The Video Data Type
Outline

! What is video?
» Video components
» Representations of video signals
» Color spaces

! Digital Video
» Coding

! Compression basics
» Simple compression
» Interpolation-based techniques
» Predictive techniques
» Transforms
» Statistical techniques

3

Video Basics
The components of video

! Video deals with absorbed and projected light
» Cameras absorb light and monitors project light

! The primary colors in this domain are:
» red, green, and blue

R-value

G-value

B-value

4

Video Basics
The components of video transmission

! Video is a multi-dimensional signal

R-component G-component B-component
x

y

time

5

Video Basics
Video as a 1-dimensional signal

! Representation of a 2-dimensional image

(R, G, B)11, (R, G, B)12, (R, G, B)13, ..., (R, G, B)row, col

! Representation of motion (3-dimensional images)

Frame i Frame i+1

33 ms NTSC (30 fps)
40 ms PAL (25 fps)

6

Video Basics
Resolution

! Television broadcast
standards
» NTSC — 525 lines
» PAL — 625 lines

! Computer graphics
standards
» VGA — 640x480
» SVGA — 1024x768

! Multimedia standards
» CIF — 352x288
» QCIF — 176x144

! Digital video standards
» CCIR 601 — 720x480
» HDTV — 1440x1152

NTSC (440x480)

H.261 CIF (352x288)

Image sizes
 (in picture elements)

DVI (256x240)

QCIF (176x144)

Videophone
 (128x112)

7

Video Basics
Color spaces

! RGB is not widely used for transmitting a signal between
capture and display devices
» It’s difficult to manage 3 separate inputs & outputs

(and requires too much bandwidth)

! Composite formats are used instead
» Luminance (“Y”) — the brightness of the monochrome signal

» Chrominance — the coloring information

» Chrominance is typically represented by two “color difference”
signals:
❖ “U” and “V” (“hue and tint”) or
❖ “I” and “Q” (“saturation” and “color”)

8

Video Basics
Color spaces

! NTSC video

» Y = 0.30R + 0.59G + 0.11B

» I = 0.60R – 0.28G – 0.32B

» Q = 0.21R – 0.52G + 0.31B

! PAL video/Digital recorders

» Y = 0.3R + 0.6G + 0.1B

» U = (B – Y) x 0.493

» V = (R – Y) x 0.877

R

B

G

White
R=G=B

(gray values)

R

B

G

U = 0 Plane

V = 0
Plane

Y = 1

9

Video Basics
Digital video

! Sample an analog representation of video (RGB or
YUV) & quantize
» Two dimensions of video are already discretized

» Sample in the horizontal direction according to the
resolution of the media

! 8-bits per component per sample is common
» 24 bits per picture element (pixel)

! Storage/transmission requirements
» NTSC — 440 x 480 x 30 x 24 = 152x106 bits/sec

 (19 MB/s or 24 bits/pixel (bpp))

10

The Video Data Type
Outline

! What is video?
» Video components
» Representations of video signals
» Color spaces

! Digital Video
» Coding

! Compression basics
» Simple compression
» Interpolation-based techniques
» Predictive techniques
» Transforms
» Statistical techniques

11

! Do we really need every “bit” of a video stream?
» Not if redundancy exists

» Not if we can’t perceive the effect of eliminating the bit

Digital Video
Compression Techniques

! Eliminating imperceptible detail
» Coding

» Domain transformation

! Eliminating redundancy
» Spatial redundancy

» Temporal redundancy

12

Digital Video
Compression Techniques

Truncation
CLUT
Run-length

Truncation
CLUT
Run-length

Sub-samplingSub-sampling
DPCM
Motion
Compensation

DPCM
Motion
Compensation

Discrete
Cosine
Transform

Discrete
Cosine
Transform

Huffman &
Arithmetic
coding

Huffman &
Arithmetic
coding

Video
Compression

Algorithm

Video
Compression

Algorithm

Adapted from Buford p.147

Fixed Adaptive

Color
Components

Color
Components Bit

Assignment

Bit
Assignment

Video
Input

Compressed
Bit-Stream

Simple Interpolative Predictive Transform Statistical

(PCM Signals)

13

Video Compression
Issues

! Bandwidth requirements of resulting stream
» Bits per pixel (bpp)

! Image quality

! Compression/decompression speed
» Latency
» Cost
» Symmetry

! Robustness
» Tolerance of errors and loss

! Application requirements
» Live video
» Stored video

14

Simple Image Compression
Truncation

! Reducing the number of bits per pixel
» Throw away the least significant bits of each sample value

! Example
» Go from RGB at 8 bits/component sample (8:8:8) to 5 bits

(5:5:5)
❖ Go from 24 bpp to 15 bpp

❖ This gives “acceptable results”

» Go from YUV at 8 bits/component sample 6:5:5 (16 bpp)

! Advantage — simple!

15

Simple Compression Schemes
Color-table lookup (CLUT)

! Quantize coarser in the color
domain
» Pixel values represent indices

into a color table
» Tables can be optimized for

individual images

! Entries in color table stored at
“full resolution” (e.g. 24 bits)

! Example:
» 8-bit indices (256 colors) gives

(440 x 480) x 8 + (24 x 256) = 1.7x106 bits/sec

0 1 2 3 4 5 6 7 ...

0

1

2

3

4

5

6

7...

16

Simple Compression Schemes
Run-length encoding

! Replace sequences of pixel components with identical
values with a pair (value, count)

! Works well for computer-generated images, cartoons.
works less well for natural video

! Also works well with CLUT encoded images
(i.e., multiple techniques may be effectively combined)

17 23 54 54 54 54 54 54 54 22 11

17 23 (54, 7) 22 11

RLE

17

Interpolative Compression Schemes
Color sub-sampling

! Do not acquire chrominance component values at all
sampling points
» Humans have poor acuity for color changes

» UV and IQ components were defined with this in mind

! Example: Color representation in digital tape recorders
» Subsampling by a factor of 4 horizontally is performed

Y component U component V component

18

Interpolative Compression Schemes
Color sub-sampling

! Subsampling by a factor of 4 horizontally & vertically

! Interpolating between samples provides “excellent” results
» Chrominance still sampled at 8 bpp

Y component U component V component

19

Interpolative Compression Schemes
Color sub-sampling

! Intermediate pixels either take on the value of nearest
sampling point or their value is computed by interpolation

! Bi-linear interpolation:

Sub-sampled
U or V component

...
... ...

...

(0,0) (1,0)

(0,1) (1,1)

U(1, 1) = U(0,0)x0.75 + U(1,0)x0.25 +
 U(0,1)x0.75 + U(1,1)x0.25

U(1, 1) = U(0,0)x0.75 + U(1,0)x0.25 +
 U(0,1)x0.75 + U(1,1)x0.25

20

Interpolative Compression Schemes
Color sub-sampling

! Storage/transmission requirements reduction:
» Within a 4x4 pixel block:

 bpp =
(8 bpp luminance)x16 samples + (8 bpp chrominance)x2

16
 = 9

» A 62.5% reduction overall

Y component U component V component

21

Predictive Compression Schemes
Exploiting spatial & temporal redundancy

! Adjacent pixels are frequently similar
» Do pixel-by-pixel DPCM compression

❖ Leads to smearing of high-contrast edges

» ADPCM — a little better, a little worse
❖ Introduces “edge quantization” noise

! Motion Estimation — If the future is the similar to the
past, encode only the difference between frames
» This assumes we can store a previous frame to compare with

a future one

22

Transform-Based Compression
Exploiting redundancy in other domains

! A simple linear transformation

» Encode differences with less precision

! Storage savings
» Original array: 4 pixels x 8 bpp = 32 bits

» Transformed array: 8 bits + (3 pixels x 4 bpp) = 20 bits

A B

C D

2 x 2 array of pixels

A B–A C–A D–A

1-D array of differences

23

! A transformation into the frequency domain

! Example: 8 adjacent pixel values (e.g., luminance)

! What is the most compact way to represent this
signal?

Transform-Based Compression
The Discrete Cosine Transform (DCT)

Sample values Level-shifted values

255

128

0
0 1 2 3 4 5 6 7

127

0

-128
0 1 2 3 4 5 6 7

24

Transform-Based Compression
The Discrete Cosine Transform (DCT)

! Represent the signal in terms of a set of cosine basis
functions

1.0

0

-1.0

1.0

0

-1.0

1.0

0

-1.0

1.0

0

-1.0

1.0

0

-1.0

1.0

0

-1.0

1.0

0

-1.0

1.0

0

-1.0

25

Transform-Based Compression
The Discrete Cosine Transform (DCT)

! The basis functions derive from sampling cosine
functions of increasing frequency
» From 0-3.5 Hz

» Basis functions sampled at 8 discrete points

1.0

0.5

0.0

-0.5

-1.0

1.0

0

-1.0

Sampled 2.5 Hz
cosine wave

26

The Discrete Cosine Transform
Represent input as a sum of scaled basis functions

Level-shifted values DCT coefficients

127

0

-128
0 1 2 3 4 5 6 7

150

0

-150
0 1 2 3 4 5 6 7

1.0

0

-1.0

1.0

0

-1.0
1.0

0

-1.0

1.0

0

-1.0

1.0

0

-1.0
1.0

0

-1.0

1.0

0

-1.0

1.0

0

-1.0

0 1 2 3

4 5 6 7

= X iΣ
i =0

7

i

27

Transform-Based Compression
The Discrete Cosine Transform (DCT)

! The 1-dimensional transform:

» F(µ) is the DCT coefficient for µ = 0..7

» f(x) is the xth input sample fot x = 0..7

» C (µ) is a constant (equal to 2-0.5 if µ = 0 and 1 otherwise)

F(µ) = Σ
x=1

7C(µ)
2

f(x) cos (2x+1)µπ
16

! The 2-dimensional (spatial) transform:

C(µ)
2

F(µ,ν) = Σ
x=1

7

f(x,y) Σ
y=1

7
C(ν)

2
cos (2x+1)µπ

16
cos (2y+1)νπ

16

28

! DCT coefficients encode the spatial frequency of the input
signal

! Claim: Higher frequency coefficients will be zero and can
be ignored

» DC coefficient — zero spatial frequency (the “average”
sample value)

» AC coefficients — higher spatial frequencies

Transform-Based Compression
The Discrete Cosine Transform (DCT)

150

0

-150

“DC coefficient”

“AC coefficients”

29

Transform-Based Compression
The two-dimensional DCT

! Apply the DCT in x and y dimensions simultaneously to
8x8 pixel blocks
» Code coefficients individually

with fewer bits

Video Frame

DCT Coefficients

172

21

-9

-10

-8

4

4

0

-18

-34

-8

6

-2

-2

-3

-8

15

24

-4

-5

-3

-4

-4

-4

-8

-8

6

4

5

6

5

3

23

-10

-5

-4

-3

-4

6

2

-9

11

4

4

3

4

3

1

-14

14

3

2

4

2

1

4

19

7

-1

1

6

-1

1

0

30

Statistical Compression
Huffman coding

! Exploit the fact that not all sample values are
equally likely
» Samples values are non-uniformly distributed

» Encode “common” values with fewer bits and less
common values with more bits

! Process each image to determine the statistical
distribution of sample values
» Generate a codebook — a table used by the decoder to

interpret variable length codes

» Codebook becomes part of the compressed image

31

Statistical Compression
Huffman coding

! Order all possible sample values in a binary tree by
combining the least likely samples into a sub-tree

Symbol Probability Code
 A 0.75
 B 0.125
 C 0.0625
 D 0.0625

P(C) = 0.062P(C) = 0.062 P(D) = 0.062P(D) = 0.062P(B) = 0.125P(B) = 0.125P(A) = 0.75P(A) = 0.75

P(CD) = 0.125P(CD) = 0.125

P(BCD) = 0.25P(BCD) = 0.25

P(ACBD) = 1P(ACBD) = 1

0

1

1

1

0

0 1
 01
001
000

! Label the branches of the tree with 1’s and 0’s
» Huffman code is the sequence of 1’s and 0’s on the path

from the root to the leaf node for the symbol

