
FPGA Synthesis
Training Course

July 1998

CIC Training Manual

CIC

Course Outline - ²CIC Training Manual

Course Outline
X Introduction to PLD
X Altera Device Families
X Xilinx Device Families
X HDL Design Flow & Tools

CIC

Why this course?
 For ASIC Users For pure FPGA Users

Front-End Cell-Based IC Design Kit (2 days) Verilog / VHDL (2 days)
 Verilog / VHDL (2 days) FPGA Synthesis (1 day)
 Logic Synthesis (2 days)

Back-End Cell-Based IC Physical Design (3 days) Altera(WS) / Xilinx(WS) (1.5 days)

Course Outline - ³CIC Training Manual

X HDL Coding Hints
• Generic Coding Techniques & Considerations
• Altera-Specific Issues
• Xilinx-Specific Issues

X Summary & Getting Help

Introduction to PLD - ²CIC Training Manual

Introduction to PLD

PLD : Programmable Logic Device
SPLD : Small/Simple Programmable Logic Device
CPLD : Complex Programmable Logic Device
FPGA : Field Programmable Gate Array

PLD Gate Array Cell-Based IC Full Custom IC

ASIC

Logic

Standard Logic

CPLDSPLD FPGA

Introduction to PLD - ³CIC Training Manual

Main Features

X Field-programmable
X Reprogrammable
X In-circuit design verification
X Rapid prototyping
X Fast time-to-market
X No IC-test & NRE cost
X H/W emulation instead of S/W simulation
X Good software
X ...

Introduction to PLD - ´CIC Training Manual

Programmability

X Why programmable? Why reprogrammable?
• Logic is implemented by programming the “configuration memory”
• Various configuration memory technologies

– One-Time Programmable: anti-fuse, EPROM

– Reprogrammable: EPROM, EEPROM, Flash & SRAM

configuration
 memory

M

Introduction to PLD - µCIC Training Manual

Programmable Combinational Logic

Product Term-based Building Block
 * 2-level logic
 * High fan-in

Look-up Table-based Building Block
 * 4 to 5 inputs, fine grain architecture
 * ROM-like

LUT
(Look-Up Table)

configuration
 memory

M

Introduction to PLD - ¶CIC Training Manual

Programmable Register

M

M

PR

CLR

D

EN

Q

1
M

M

M

M

M

M

M

M

output select

preset select

clear select

edge control

enable select

clock select

* Typical register controls: clock, enable, preset/clear, ...

Introduction to PLD - ·CIC Training Manual

Programmable Interconnect

logic block

switching
element

switching
element

switching
element

switching
element

logic cells

logic cells

logic cells

logic cells

Typical routing resources: switching elements, local/global lines, clock buffers...

Introduction to PLD - ¸CIC Training Manual

Programmable I/O

pull-down
control

Vcc

M

M

pull-up
control

PAD

Gnd

PR

CLR

D Q
M

M

output select

slew-rate
controlM

output enable

M

M

M

M

PR

CLR

DQ

input select

Typical I/O controls: direction, I/O registers, 3-state, slew rate, ...

Introduction to PLD - ¹CIC Training Manual

Field-Programmability

X Why filed-programmable?
• You can verify your designs at any time by configuring the FPGA/CPLD devices on board

via the download cable or hardware programmer

download cable

programmer & adapter

FPGA
or

CPLD

output display

FPGA
CPLD

a
b

z

01011...

Introduction to PLD - ºCIC Training Manual

Rapid Prototyping

X Reduce system prototyping time :
• You can see the “real” things

– In-circuit design verification
• Quick delivery instead of IC manufacture

• No test development, no re-spin potential (i.e. no NRE cost)
• Satisfied for educational purposes

X Fast time-to-market

FPGA
or

CPLD

0. Design, simulation, & compilation
1. Downloading configuration bitstream

2. Entering input data
3. Obtaining output data
4. Analysis

Design
Feasibility

Detailed
Design

Prototyping

Test &
Debug

IC
Manufacture

Products

FPGA/CPLD is on the board!

Introduction to PLD - ²±CIC Training Manual

Software Environment

X Various design entries and interfaces
• HDL: Verilog, VHDL, ABEL, ...
• Graphic: Viewlogic, OrCAD, Cadence, ...

X Primitives & macrofunctions provided
• Primitive gates, arithmetic modules, flip-flops, counters, I/O elements, ...

X Constraint-driven compilation/implementation
• Logic fitting, partition, placement & routing (P&R)

X Simulation netlist generation
• Functional simulation & timing simulation netlist extraction

X Programmer/download program

Introduction to PLD - ²²CIC Training Manual

FPGA/CPLD Benefits

High-Density
PLDs

√
√
√

√ √

√ √
√ √
√ √
√ √

√ √

Gate Arrays

√
√
√
√

√

√

Cell-Based
ICs

√
√

√ √

√

Full-Custom
ICs

√ √
√ √
√ √

√

Speed
Integration Density
High-Volume device cost
Low-volume device cost

Time to Market
Risk Reduction
Future Modification
Development Tool

Educational Purpose

√ Good
√√ Excellent

Introduction to PLD - ²³CIC Training Manual

CPLD vs. FPGA

CPLD FPGA

Architecture PAL-like Gate Array-like
SOP-Based Logic Cells LUT-Based Logic Cells
Combinational-Intensive Register-Intensive

Density Low-to-medium Medium-to-high
 Many 22V10s 1K to 250K logic gates

Performance Predictable timing Application dependent
 Up to 200 MHz today Up to 100MHz today

Interconnect “Crossbar” Incremental

This training course will
focus on FPGA devices.

Introduction to PLD - ²´CIC Training Manual

Altera & CIC

X Altera
• One of the world leaders in high-performance & high-density PLDs & associated CAE tools
• Supports university program in Taiwan via CIC

X From CIC, you can apply:
• Altera software - it’s free for educational purpose!

) PC : MAX+PLUS II (full design environment)
) WS : MAX+PLUS II (full design environment since V8.1)

Synopsys interface (Cadence & Viewlogic interfaces are optional)
• Altera hardware - it’s awarded to good software applicants!

– University Program Design Laboratory Package (since 9709):
• UP1 Education Board

• ByteBlaster download cable

• Student Edition Software

• Of course, CIC is responsible for technical supports
• WWW: http://www.cic.edu.tw/html/software/Altera

CIC

Introduction to PLD - ²µCIC Training Manual

Xilinx & CIC

XXilinx
• One of the world leaders in high-performance & high-density PLDs & associated CAE tools
• Supports university program in Taiwan via CIC

X From CIC, you can apply or purchase:
• Xilinx software - it’s free for educational purpose!

)PC : Xilinx Foundation Express (including XACTstep M1, FPGA Express)
)WS : Xilinx Alliance Series (including XACTstep M1)

Synopsys interface (XSI), Cadence Verilog-XL interface
• Xilinx hardware:

– XChecker download cable
– FPGA Demo Board

• CIC is responsible for technical supports for universities

• WWW: http://www.cic.edu.tw/html/software/Xilinx

CIC

Altera Device Families - ²CIC Training Manual

Altera Device Families

Pins

Usable Gates

FLEX 10K

FLEX 6000
FLEX 8000MAX 9000

MAX 7000

Classic
MAX 5000

Altera Device Families - ³CIC Training Manual

Altera Device Families

X Altera offers 7 device families

EPROM

EPROM

EEPROM

SRAM

SRAM

EEPROM

SRAM

Device Family Reconfigurable
Element

Logic Cell
Structure

Usable/Typical
Gates

SOP

SOP

SOP

LUT

LUT

SOP

LUT

200 ~ 900

800 ~ 3,200

600 ~ 5,000

10,000 ~ 24,000

2,500 ~ 16,000

6,000 ~ 12,000

10,000 ~ 100,000

Classic

MAX 5000

MAX 7000/E/S(1)

FLEX 6000(1)

FLEX 8000A

MAX 9000/A(1)

FLEX 10K/A(1)

Family Members

EP610, 910, 1810

EPM5032, 064, 128, 130, 192

EPM7032/V/S, 064/S, 096/S,
EPM7128E/S, 160E/S, 192E/S, 256E/S

EPF6010, 016/A, 024A

EPF8282A, 452A, 636A, 820A, 1188A, 1500A

EPM9320/A, 400/A, 480/A, 560/A

EPF10K10/A, 20/A, 30/A, 40/A, 50/V/A,
EPF10K70/V/A, 100/A, 130/V/A, 250A

Note:
(1) Not all devices are currently available.
(2) Altera plans to ship new Michelangelo family in the near future.

Altera Device Families - ´CIC Training Manual

MAX & FLEX Architectures - (1)

Carry
Chain

Look-Up
Table
(LUT)

Clear/
Preset
Logic

Cascade
Chain

D
PRn

CLRn

Q

Carry-In Cascade-In

Carry-Out Cascade-Out

DATA1
DATA2
DATA3
DATA4

LABCTRL1
LABCTRL2

LABCTRL3

LABCTRL4

LE Out

Clock Select

Programmable Register

Product-
Term
Select
Matrix VCC

D

ENA

PRn

CLRn

Q

Clear
Select

Clock/
Enable
Select

Register

Bypass

Global
Clock

Global
Clear

36 Programmable
Interconnect

Signals

16 Expander
Product Terms

Shared Logic
Expanders

Parallel Logic
Expanders
(from other MCs)

to PIA

to I/O
Control
Block

Programmable
Register

MAX architecture

FLEX architecture

Altera Device Families - µCIC Training Manual

MAX & FLEX Architectures - (2)

X Choose the appropriate architecture
• Different PLD architectures provide different performance & capacity results for same

application

Course Grain

SOP

EEPROM

Combinational-Intensive Logic

e.g. Large Decoders, State Machines, ...

Feature MAX
Architecture

FLEX
Architecture

Fine Grain

LUT

SRAM

Register-Intensive, Arithmetic Functions

e.g. Adders, Comparators, Counters, ...

Basic Building Block

Logic Cell Structure

Technology

Optimization

This training course will
focus on FLEX devices.

Altera Device Families - ¶CIC Training Manual

FLEX 8000A Family

X Today’s FLEX 8000A family members

Åæ÷êäæ ÍÆôÈâõæô Ôñææå Èóâåæ Ñâäìâèæ Ðñõêðïô Ê°Ð Ñêïô

ÆÑÇ¹³¹³Â

ÆÑÇ¹³¹³Â×

ÆÑÇ¹µ¶³Â

ÆÑÇ¹·´·Â

ÆÑÇ¹¹³±Â

ÆÑÇ¹²²¹¹Â

ÆÑÇ¹²¶±±Â

³±¹

³±¹

´´·

¶±µ

·¸³

²±±¹

²³º·

³¶±±

³¶±±

µ±±±

·±±±

¹±±±

²³±±±

²·±±±

®³®´®µ

®µ

®³®´®µ

®³®´®µ

®³®´®µ

®³®´®µ

®³®´®µ

ÑÍÄÄ¹µ ÕÒÇÑ²±±

ÕÒÇÑ²±±

ÑÍÄÄ¹µ ÕÒÇÑ²±± ÑÒÇÑ²·± ÑÈÂ²·±

ÑÍÄÄ¹µ ÑÒÇÑ²·±°³±¹ ÑÈÂ²º³

ÕÒÇÑ²µµ ÑÒÇÑ²·±°³±¹ ÑÈÂ²º³ ÃÈÂ³³¶

ÑÒÇÑ³±¹°³µ± ÑÈÂ³´³

ÑÒÇÑ³µ± ÑÈÂ³¹± ÓÒÇÑ´±µ

·¹¸¹

·¹¸¹

·¹²³±

·¹²²¹²´·

²³±²¶³

²µ¹²¹µ

²¹²³±¹

ÇÇô

³¹³

³¹³

µ¶³

·´·

¹³±

²²¹¹

²¶±±

Altera Device Families - ·CIC Training Manual

FLEX 8000A Features

X FLEX 8000A main features...
• SRAM-based devices based on Altera’s FLEX architecture
• 282 ~ 1,500 registers
• 2,500 ~ 16,000 usable gates

• Programmable flip-flops with individual clear & preset controls
• Dedicated carry chain & cascade chain
• FastTrack continuous routing structure

• Programmable output slew-rate control
• Supports in-circuit reconfiguration (ICR)
• JTAG boundary-scan test circuitry

• PCI-compliant -2 speed grade
• 3.3-V or 5-V operation

– Full 3.3-V EPF8282AV

– 3.3-V or 5-V I/O for EPF8636A and larger devices

Altera Device Families - ¸CIC Training Manual

FLEX 8000A Architecture

IOE

IOE

1

8

IOE

IOE

1

8

IOE

IOE

1

8

IOE

IOE

1

8

IOE IOE IOE IOE

IOE IOE IOE IOE

LABLAB

LAB LAB

A1 A2

B1 B2

Logic Element

Altera Device Families - ¹CIC Training Manual

FLEX 8000A Logic Element

Carry
Chain

Look-Up
Table
(LUT)

Clear/
Preset
Logic

Cascade
Chain

D
PRn

CLRn

Q

Carry-In Cascade-In

Carry-Out Cascade-Out

DATA1
DATA2
DATA3
DATA4

LABCTRL1
LABCTRL2

LABCTRL3

LABCTRL4

LE Out

Clock Select

Programmable Register

Altera Device Families - ºCIC Training Manual

Carry Chains
Carry-In

Carry-Out

LUTA1
B1

Carry Chain

Register

LUTA2
B2

Carry Chain

Register

LUTAn
Bn

Carry Chain

Register

S1

S2

Sn

LUT

Carry Chain

Register

LE1

LE2

LEn

LEn+1

Altera Device Families - ²±CIC Training Manual

Cascade Chains

LUTD[3..0]

LE1

LUTD[7..4]

LE2

LUT

LEn

AND Cascade Chain

LUTD[3..0]

LE1

LUTD[7..4]

LE2

LUT

LEn

OR Cascade Chain

Altera Device Families - ²²CIC Training Manual

FLEX 8000A Logic Array Block

LE 1

LE 2

LE 3

LE 4

LE 5

LE 6

LE 7

LE 8

2 168

8
4

4

4

4

4

4

4

4

4

4

8
2

4

24

LAB local
Interconnect
(32 channels)

LAB Control
Signals

Carry-In &
Cascade-In
from LAB
on left

Carry-Out &
Cascade-Out
to LAB on right

Column-to-Row
Interconnect

Column FastTrack
Interconnect

Row FastTrack Interconnect

Altera Device Families - ²³CIC Training Manual

FLEX 8000A FastTrack Interconnect

Local FastTrack(32 channels)

LE

LAB

Row FastTrack
(168/216 channels)

Column FastTrack
(16 channels)

Altera Device Families - ²´CIC Training Manual

FLEX 8000A I/O Element

VCC

D

CLRn

Q

6

C
LR

0
C

LR
1/

O
E

0
C

LK
0

C
LK

1/
O

E
1

O
E

2
O

E
3

(O
E

[4
..9

])

Programmable
Inversion

Slew-Rate
Control

(OE[4..9]) are for EPF81500A devices only

6

from Row or Column
Interconnect

to Row or Column
Interconnect

VCC

GND

Altera Device Families - ²µCIC Training Manual

FLEX 8000A Configuration

X Configuration schemes & data source
• Refer to Altera’s Application Notes for details

– AN033: Configuring FLEX 8000 Devices
– AN038: Configuring Multiple FLEX 8000 Devices

AS

APU

APD

PS

PPS

PPA

(Active Serial)

(Active Parallel Up)

(Active Parallel Down)

(Passive Serial)

(Passive Parallel Synchronous)

(Passive Parallel Asynchronous)

Serial configuration EPROM

Parallel EPROM

Parallel EPROM

Serial data path (e.g. serial download cable)

Intelligent host

Intelligent host

Configuration Scheme Data Source

Altera Device Families - ²¶CIC Training Manual

FLEX 10K/A Families

X Today’s FLEX 10K/A family members

Device LEsGates Speed Grade Package Options I/O Pins

EPF10K10

EPF10K20

EPF10K30

EPF10K40

EPF10K50

EPF10K70

EPF10K100

Available FLEX10KA Devices

EPF10K50V

EPF10K130V

576

1,152

1,728

2,304

2,880

3,744

4,992

2,880

6,656

10,000

20,000

30,000

40,000

50,000

70,000

100,000

50,000

130,000

-3,-4

-3,-4

-3,-4

-3,-4

-3,-4

-3,-4

-3,-4

-3,-4

-3,-4

PLCC84, TQFP144, RQFP208

TQFP144, RQFP208 /240

TQFP144, RQFP208 /240, BGA356

RQFP208/240

RQFP240, BGA356, PGA403

RQFP240, PGA503

PGA503

RQFP240, BGA356

BGA596, PGA599

59,107,134

107,147,189

107,147,189,246

147,189

189,274,310

189,358

406

189,274

470

FFs

720

1,344

1,968

2,576

3,184

4,096

5,392

3,184

7,126

EAB

3

6

6

8

10

9

12

10

16

Altera Device Families - ²·CIC Training Manual

FLEX 10K Features

X FLEX 10K/A main features...
• SRAM-based devices based on Altera’s FLEX architecture
• Embedded programmable logic family

– Embedded array for implementing RAMs & specialized logic functions

– Logic array for general logic functions
• High density

– 10,000 ~ 100,000 typical gates (logic & RAMs)

– 720 ~ 5,392 registers
– 6,144 ~ 24,576 RAM bits

• Flexible interconnect

– FastTrack continuous routing structure
– Dedicated carry chain & cascade chain
– Up to 6 global clock & 4 global clear signals

Altera Device Families - ²¸CIC Training Manual

FLEX 10K Features - (2)

X FLEX 10K main features... (continued)
• Powerful I/O pins

– Individual tri-state control for each pin
– Programmable output slew-rate control

– Open-drain option on each I/O pin
– Peripheral register

• System-level features

– Supports in-circuit reconfiguration (ICR)
– JTAG boundary-scan test circuitry
– PCI-compliant -3 speed grade

– 3.3-V or 5-V I/O pins on devices in PGA, BGA & 208-pin QFP packages
– ClockLock & ClockBoost option(for EPF10K100GC503-3DX device only)

• Flexible package options

– Pin-compatibility with other FLEX 10K devices in the same packages

Altera Device Families - ²¹CIC Training Manual

FLEX 10K Architecture

IOE

IOE

1

8

IOE

IOE

1

8

IOE

IOE

1

8

IOE

IOE

1

8

IOE IOE IOE IOE

IOE IOE IOE IOE

LAB

IOE IOE

IOE IOE

IOE IOE

IOE IOE

Logic Element

EAB

EAB

Logic Array Logic Array

Embedded
Array

Altera Device Families - ²ºCIC Training Manual

FLEX 10K Embedded Array Block

RAM/ROM

256x8
512x4

1024x2
2048x1

16,8,4,2622/26

EAB local Interconnect
(22/26 channels)

Column FastTrack
Interconnect

Row FastTrack Interconnect

24

Dedicated Inputs & Global Signals

Data
Out

Data
InD Q

D Q

D Q
WE

Address

D Q

8,4,2,1

11,10,9,8
16,8,4,2

Altera Device Families - ³±CIC Training Manual

What is the EAB?

X What is the EAB?
• Larger block of RAM embedded into the PLD
• Can be preloaded with a pattern
• EAB size is flexible - 256x8 / 512x4 / 1024x2 / 2048x1

• You can combine EABs to create larger blocks
• Using RAM does not impact logic capacity

X EAB as logic
• EAB is preloadable at configuration time
• You can use EAB to create a large lookup table or ROM

• EAB is the same die size of 16 LEs, however, one EAB can perform complex functions
requiring more than 16 LEs

– Example: 4x4 Multiplier (40 LEs, 43MHz) vs. (1 EAB, 73MHz)

Altera Device Families - ³²CIC Training Manual

FLEX 10K Logic Element

Carry
Chain

Look-Up
Table
(LUT)

Clear/
Preset
Logic

Cascade
Chain

Carry-In Cascade-In

Carry-Out Cascade-Out

DATA1
DATA2
DATA3
DATA4

LABCTRL1
LABCTRL2

LABCTRL3

LABCTRL4

to FastTrack
Interconnect

Clock Select

D/T

ENA

PRn

CLRn

Q

to LAB Local
Interconnect

Programmable Register

Device-Wide Clear

Altera Device Families - ³³CIC Training Manual

FLEX 10K Register Packing

Carry
Chain

Look-Up
Table
(LUT)

Cascade
Chain

Carry-In Cascade-In

Carry-Out Cascade-Out

DATA1
DATA2
DATA3
DATA4

LABCTRL3

LABCTRL4

to FastTrack
Interconnect

Clock Select

D/T

ENA

PRn

CLRn

Q

to LAB Local
Interconnect

Programmable Register

Clear/
Preset
Logic

LABCTRL1
LABCTRL2

Device-Wide Clear

Altera Device Families - ³´CIC Training Manual

FLEX 10K Logic Array Block

LE 1

LE 2

LE 3

LE 4

LE 5

LE 6

LE 7

LE 8

2 8

16
6

4

4

4

4

4

4

4

4

4

8
2

4

22/26

LAB local
Interconnect
(30/34 channels)

LAB Control
Signals

Carry-In &
Cascade-In

Carry-Out &
Cascade-Out

Column-to-Row
Interconnect

Column FastTrack
Interconnect

Row FastTrack Interconnect

8

4

16

24

Dedicated Inputs & Global Signals

Altera Device Families - ³µCIC Training Manual

FLEX 10K FastTrack Interconnect

Local FastTrack(30/34 channels)

LE

LAB

Row FastTrack
(144/216/312 channels)

Column FastTrack
(24 channels)

Altera Device Families - ³¶CIC Training Manual

FLEX 10K I/O Element

from One Row or
Column Channel

VCC

Open-Drain
Output

12

to Row or Column
Interconnect

D

ENA
CLRn

Q

VCC

GND

OE[7..0]

CLK[2..1]

ENA[5..0]

CLRn[1..0]

Peripheral Control Bus[11..0]

Slew-Rate
Control

Programmable
Inversion

from Row or Column
Interconnect

VCC

GND

VCC

CLK[3..2]

from One Row or
Column Channel

Device-Wide
Output Disable

2 Dedicated
Clock Inputs

2

Altera Device Families - ³·CIC Training Manual

ClockLock Feature

X ClockLock: faster system performance
• ClockLock feature incorporates a phase-locked loop (PLL) with a balanced clock tree to

minimize on-device clock delay & skew

Clock

D Q

D Q

ClockLock

Clock
Delay

Clock at Pin ClockLock Clock Clock at Register

Clock at Pin

ClockLock Clock

Clock at Register

Effective clock delay is small.

Altera Device Families - ³¸CIC Training Manual

ClockBoost Feature

X ClockBoost: increased system bandwidth & reduced area
• ClockBoost feature provides clock multiplication, which increases clock frequencies by as

much as 4 times the incoming clock rate
• You can distribute a low-speed clock on the PCB with ClockBoost

• ClockBoost allows designers to implement time-domain multiplexed applications. The same
functionality is accomplished with fewer logic resources.

– Note:
(1) Up to now, only EPF10K100-3DX devices support ClockLock & ClockBoost features.

(2) All new FLEX 10KA devices will support ClockBoost option.

Altera Device Families - ³¹CIC Training Manual

FLEX 10K Configuration

X Configuration schemes & data source
• Refer to Altera’s Application Notes for details

– AN059: Configuring FLEX 10K Devices
– AN039: JTAG Boundary-Scan Testing in Altera Devices

PS

PPS

PPA

JTAG

(Passive Serial)

(Passive Parallel Synchronous)

(Passive Parallel Asynchronous)

Altera’s EPC1 configuration EPROM, BitBlaster
or ByteBlaster download cable, serial data source

Intelligent host, parallel data source

Intelligent host, parallel data source

JTAG controller

Configuration Scheme Data Source

Altera Device Families - ³ºCIC Training Manual

FLEX Roadmap

X FLEX roadmap
• High-density 3.3-V FLEX10KA family (0.35um, quad-layer-metal process)

– Up to 250,000 gates (EPF10K250A: 12,160 LEs and 20 EABs)
– “MultiVolt” I/O interface

• Low-cost FLEX 6000 family (0.5um and 0.35um, triple-layer-metal process)
– Up to 24,000 gates (EPF6024A: 1,960 LEs)
– “OptiFLEX” architecture, advanced bond pad technology, interleaved LABs, and an

optimized I/O structure to increase the level of programmable logic efficiency
– “MultiVolt” I/O interface

Altera Device Families - ´±CIC Training Manual

Appendix: FLEX 6000 Architecture
FastFLEX ™ I/O

Interleaved LABs

FastTrack ™ Interconnect

3.2 mil (81 µm)

Bond Pads

µPitch ™ Technology
Row InterconnectRow Interconnect

Local
Interconnect

Column
Interconnect

FLEX 6000 Die

Local
Interconnect

Column Interconnect

Row InterconnectRow Interconnect

PinPin

PinPin

Xilinx Device Families - ²CIC Training Manual

Xilinx Device Families

XC9500

XC3100A/L
XC3000A/L
SRAM

LOW COST

 H
IG

H
 D

E
N

S
IT

Y

HIGH SPEED

 H
IG

H
 D

E
N

S
IT

Y

PAL-likePAL-likePAL-like
ArchitecturesArchitecturesArchitectures
(CPLDs)(CPLDs)(CPLDs)

ASIC-likeASIC-likeASIC-like
ArchitecturesArchitecturesArchitectures
(FPGAs)(FPGAs)(FPGAs)

Spartan

XC5200
Cost/Performance

 Optimized
SRAM

XC4000E,X
Performance
Optimized SRAM

New Markets XC6200

SRAM FPGA

Xilinx Device Families - ³CIC Training Manual

Xilinx Device Families

SRAM

SRAM

SRAM

SRAM

SRAM

SRAM

SRAM

EPROM

FLASH

Device Family Reconfigurable
Element

Logic Cell
Structure

Usable/Typical
Gates

LUT

LUT

LUT

LUT

LUT

LUT

SOG(1)

SOP

SOP

1,000 ~ 7,500

3,000 ~ 25,000

28,000 ~ 85,000

125,000 ~ 250,000

2,000 ~ 40,000

2,000 ~ 15,000

9,000 ~ 64,000

400 ~ 3,800

800 ~ 12,800

XC3000A/L,

XC3100A/L

XC4000E

XC4000EX/XL

XC4000XV

SPARTAN/XL

XC5200

XC6200(2)

XC7300

XC9500

Family Members

3020A/L, 3030A/L, 3042A/L, 3064A/L, 3090A/L

3120A, 3130A, 3142A/L, 3164A, 3190A/L, 3195A

4003E, 4005E, 4006E, 4008E, 4010E,

4013E, 4020E, 4025E

4005XL, 4010XL, 4013XL, 4020XL, 4028EX/XL,

4036EX/XL, 4044EX/XL, 4052XL, 4062XL, 4085XL

40125XV, 40150XV, 40200XV, 40250XV

S05/XL, S10/XL, S20/XL, S30/XL, S40/XL

5202, 5204, 5206, 5210, 5215

6209, 6216, 6236, 6264

7318, 7336/Q, 7354, 7372, 73108, 73144

9536, 9572, 95108, 95144, 95180, 95216,

95288, 95432, 95576
Note:
(1) XC6200 series is a special family of fine-grain, sea-of-gates FPGAs.

Xilinx Device Families - ´CIC Training Manual

From
FastCONNECT

36

SUM-Term
Logic

D/T Q

R S

to/from other macrocells

RegisterXOR 18

Global
Clocks

Global
OEs

P-term Clk
P-term R&S
P-term OE

 3 2 or 4

to/from other macrocells

Global
R/S

P-Term
Allocator

Xilinx FPGA & CPLD Architectures
CPLD architecture

FPGA architecture

D Q
SD

RD
EC

S/R
Control

D Q
SD

RD

EC

S/R
Control

1

1

F'

G'

H'

DIN

F'

G'

H'

DIN

F'

G'

H'

H'

H
Func.
Gen.

G
Func.
Gen.

F
Func.
Gen.

G4
G3
G2
G1

F4
F3
F2
F1

C4C1 C2 C3

 K

Y

X

 H1 DIN S/R EC

Xilinx Device Families - µCIC Training Manual

Choose of FPGAs and CPLDs

X Choose the appropriate architecture
• Different PLD architectures provide different performance & capacity results for same

application

Course Grain

SOP

Non-Volatile Memory

Combinational-Intensive Logic

e.g. Large Decoders, State Machines, ...

Feature CPLD
Architecture

FPGA
Architecture

Fine Grain

LUT

SRAM

Register-Intensive, Arithmetic Functions

e.g. Adders, Comparators, Counters, ...

Basic Building Block

Logic Cell Structure

Technology

Optimization

This training course will
focus on FPGA devices.

Xilinx Device Families - ¶CIC Training Manual

Xilinx FPGA Architecture

CLB

CLB

CLB

CLB

Switch
Matrix

Programmable
Interconnect I/O Blocks (IOBs)

Configurable
Logic Blocks (CLBs)

D Q

Slew
Rate

Control

Passive
Pull-Up,

Pull-Down

Delay

Vcc

Output
Buffer

Input
Buffer

Q D

Pad

D Q
SD

RD

EC

S/R
Control

D Q
SD

RD

EC

S/R
Control

1

1

F'

G'

H'

DIN

F'

G'

H'

DIN

F'

G'

H'

H'

H
Func.
Gen.

G
Func.
Gen.

F
Func.
Gen.

G4
G3
G2
G1

F4
F3
F2
F1

C4C1 C2 C3

 K

Y

X

 H1 DIN S/R EC

Xilinx Device Families - ·CIC Training Manual

What’s Really in the Chip?

CLB
(Red)

Switch
Matrix

Long Lines
(Purple)

Direct
Interconnect
(Green)

Routed Wires (Blue)

Programmable Interconnect Points, PIPs (White)

Three-State
Buffer

Xilinx Device Families - ¸CIC Training Manual

I/O Block (IOB)

X Periphery of identical I/O blocks
• Input, output, or bi-directional
• Registered, latched, or combinational (XC3000/XC4000)
• Tree-state output

• Programmable output slew rate

IOB Pad

Bonded to
Package PinClocks

TS
O

I

Xilinx Device Families - ¹CIC Training Manual

Configurable Logic Block (CLB)

X Combinatorial logic via lookup table
• Any function(s) of available inputs

X Output registered and/or combinatorial
• Latches in XC5200

Combinatorial
Logic

Function(s)
Flip-
Flops

Inputs Outputs

Xilinx Device Families - ºCIC Training Manual

Programmable Interconnect

X Resources to create arbitrary interconnection networks
X Various types of interconnect

• Fast direct interconnect
• Flexible general-purpose interconnect
• Low-skew long lines

X Internal three-state buffers
• 2 tri-state buffers per CLB for buses

– For buses and wide functions

CLB

CLB

CLB

CLB

Switch
Matrix

Xilinx Device Families - ²±CIC Training Manual

Special Resources

X Global clock buffers
X Global reset net
X Internal oscillator
X XC4000/XC5200 special resources

• Global three-state net
• Arithmetic carry logic

• Wide decode or cascade functions
• Boundary scan

Xilinx Device Families - ²²CIC Training Manual

XC3000 Series Family

Part Typical Gates CLB Matrix CLBs Flip-Flops IOBs

3120A 1,300-1,800 8x8 64 256 64

3130A 2,000-2,700 10x10 100 360 80

3142A 2,500-3,700 12x12 144 480 96

3164A 4,000-5,500 14x16 224 688 120

3190A 5,000-7,000 16x20 320 928 144

3195A 6,500-8,500 22x22 484 1,320 176

Xilinx Device Families - ²³CIC Training Manual

XC3000 IOB

FLIP

FLOP

QD

R

SLEW

RATE

PASSIVE

PULL UP

OUTPUT

SELECT
3-STATE

INVERT

OUT

INVERT

FLIP

FLOP

or

LATCH

DQ

R

REGISTERED IN

DIRECT IN

OUT

3- STATE

(OUTPUT ENABLE)

TTL or

CMOS

INPUT

THRESHOLD

OUTPUT

BUFFER

(GLOBAL RESET)

CK1

1105 01C

I/O PAD

VPROGRAM-CONTROLLED MEMORY CELLS

PROGRAMMABLE INTERCONNECTION POINT or PIP=

.ik.ok

.q

.i

.o

.t

PROGRAM

CONTROLLED

MULTIPLEXER

CK2

CC

Xilinx Device Families - ²´CIC Training Manual

XC3000 CLB

XC3000 Configurable
Function Generator

LUT
(16 by 1)

A
B

QX

C

QY

D
E

F

LUT
(16 by 1)

A
B

QX

C

QY

D
E

G

LUT
(32 by 1)

A
B

QX

C

QY

D
E

G

F

Xilinx Device Families - ²µCIC Training Manual

XC3000 Interconnect Resources

X General-purpose interconnect
• Switching matrix
• PIPs (Programmable Interconnection Point)

X Direct interconnect
• X -> right B / left C

• Y -> above D / below A
• Die edge direct interconnect

X Longlines
• 3 vertical longlines per column
• 2 horizontal longlines per row

• 2 additional outer longlines
• 2 Global nets : global buffer, alternate buffer & global reset

CLB

Switch
Matrix

B
C

E

DI

K

X

Y

AEC

D RD

CLB

CLB CLB

Xilinx Device Families - ²¶CIC Training Manual

XC4000E Family

 Part MAX Logic Gates CLB Matrix CLBs Flip-Flops IOBs

4003E 3,000 10x10 100 360 80

4005E 5,000 14x14 196 616 112

4006E 6,000 16x16 256 768 128

4008E 8,000 18x18 324 936 144

4010E 10,000 20x20 400 1,120 160

4013E 13,000 24x24 576 1,536 192

4020E 20,000 28x28 784 2,016 224

4025E 25,000 32x32 1,024 2,560 256

Xilinx Device Families - ²·CIC Training Manual

XC4000E IOB

D Q

Slew
Rate

Control

Passive
Pull-Up,

Pull-Down

Delay

Vcc

Output
Buffer

Input
Buffer

Q D

OK
(Output Clock)

IK
(Input Clock)

I1

I2

O

T/OE

Pad

CE CE

CE

Xilinx Device Families - ²¸CIC Training Manual

XC4000E CLB

H
Function
Generator

F
Function
Generator

F4

F3

F2

F1

G
Function
Generator

G4

G3

G2

G1

H1 DIN/H2 SR/H0 EC

D

EC

SD

RD

Q

S/R
Control

1

D

EC

SD

RD

Q

S/R
Control

1
K

(clock)

C1 C2 C3 C4

Y

XQ

X

YQ

Xilinx Device Families - ²¹CIC Training Manual

XC4000E Dedicated Carry Logic

G
Function
Generator

F
Function
Generator

Carry
Logic

F4

F3

F2

F1

G4
G3

G2

G1

CIN UP

CIN DOWN Carry
Logic

SUM1

COUT

SUM0

Xilinx Device Families - ²ºCIC Training Manual

XC4000E Select-RAM Memory

X CLB can be used as RAM

RAM Size

16x1

16x2

32x1

No. of Read Port

Single-Port

Dual-Port
Single-Port

Single-Port

Timing Modes

Level-Sensitive
Edge-Triggered
Edge-Triggered
Level-Sensitive
Edge-Triggered
Level-Sensitive
Edge-Triggered

XC4000/A/D/H XC4000E

Old

Address

Data

WE

XC4000
RAM

New

Address

Data

WE

XC4000E
RAM

Clock

Data 2

Address 2

Optional
Dual Port

• Synchronous
• Simple timing
• Simple to use
• Dual port support
• Programmable during
 device operation or at
 start-up configuration
• 3ns read time

• Asynchronous
• Timing critical
• Longer design times
• Single port
• Programmable only
 during device
 operation
• 4ns read time

Xilinx Device Families - ³±CIC Training Manual

XC4000E Interconnect Resources

X Single-length lines
• Switch matrix
• PIPs

X Double-length lines
X Longlines

• Vertical longlines
• Horizontal longlines

• Global longlines :
 global reset & 8 global buffers

X Dedicated paths
• Fast carry paths

switch
matrix

switch
matrix

switch
matrix

switch
matrix

CLB

F4 C4 YQG4

XQ F2 G2C2

G1
C1
K
F1
X

Y

G3

C3

F3

CLB

F4 C4 YQG4

XQ F2 G2C2

G1
C1
K
F1
X

Y

G3

C3

F3

CLB

CLB

CLB

CLB

XC4000E Routing Resources

Xilinx Device Families - ³²CIC Training Manual

XC4000X Series (EX/XL) Families

 Part MAX Logic Gates CLB Matrix CLBs Flip-Flops IOBs

4005XL 5,000 14x14 196 616 112

4010XL 10,000 20x20 400 1,120 160

4013XL 13,000 24x24 576 1,536 192

4020XL 20,000 28x28 784 2,016 224

4028EX/XL 28,000 32x32 1,024 2,560 256

4036EX/XL 36,000 36x36 1,296 3,168 288

4044XL 44,000 40x40 1,600 3,840 320

4052XL 52,000 44x44 1,936 4,576 352

4062XL 62,000 48x48 2,304 5,376 384

4085XL 85,000 56x56 3,136 7,168 448

Xilinx Device Families - ³³CIC Training Manual

XC4000X Series Enhancements

X The XC4000X Series contains XC4000E features:
• Synchronous, single and dual-port Select RAM memory
• Dedicated JTAG boundary scan logic
• High speed carry logic

• Wide Edge decoders

X In addition to:
• Twice the routing resources
• New high speed quad interconnect resources
• High speed 3 level clocking network

• VersaRing I/O added for pin assignment flexibility
• Latch capability in CLBs
• Improved carry logic for faster adders, multipliers and DSP functions

Xilinx Device Families - ³´CIC Training Manual

XC4000X IOB

Q

Flip-Flop/
Latch

Fast
Capture
Latch

D

Q
Latch

D

G

D

CE

CE

Q
Out

T

Output
Clock

I

Input
Clock

Clock
Enable

Pad

Flip-Flop

Slew Rate
Control

Output
Buffer

Output Mux

Input
Buffer

Passive
Pull-Up/

Pull-Down

2

I1

X6550

Delay Delay

Xilinx Device Families - ³µCIC Training Manual

XC4000X Interconnect Resources

 XC4000E XC4000X
Vertical Horizontal Vertical Horizontal

Singles 8 8 8 8
Doubles 4 4 4 4
Quads 0 0 12 12
Longlines 6 6 10 6
Direct Connects 0 0 2 2
Globals 4 0 8 0
Carry Logic 2 0 1 0
Total 24 18 45 32

Xilinx Device Families - ³¶CIC Training Manual

XC4000X VersaRing

Xilinx Device Families - ³·CIC Training Manual

Spartan Family

Part Gates CLB Matrix CLBs Flip-Flops IOBs

S05/XL 2,000 ~ 5,000 10x10 100 360 80

S10/XL 3,000 ~ 10,000 14x14 196 616 112

S20/XL 7,000 ~20,000 20x20 400 1,120 160

S30/XL 10,000 ~ 30,000 24x24 576 1,536 192

S40/XL 13,000 ~ 40,000 28x28 784 2,016 224

Xilinx Device Families - ³¸CIC Training Manual

Spartan Configurable Logic Block (CLB)

Xilinx Device Families - ³¹CIC Training Manual

Spartan I/O Block Diagram

Xilinx Device Families - ³ºCIC Training Manual

Spartan Interconnect Resources

Xilinx Device Families - ´±CIC Training Manual

XC5200 Families

 Part Typical Gates CLB Matrix CLBs Flip-Flops IOBs

5202 2,000-3,000 8x8 64 256 84

5204 4,000-6,000 10x12 120 480 124

5206 6,000-10,000 14x14 196 784 148

5210 10,000-16,000 18x18 324 1,296 196

5215 15,000-23,000 22x22 484 1,936 244

Xilinx Device Families - ´²CIC Training Manual

XC5200 IOB

Slew
Rate

Control

Passive
Pull-Up,

Pull-Down

Delay

Output
Buffer

Input
Buffer

Pad

I

O

T/OE

Vcc

Xilinx Device Families - ´³CIC Training Manual

XC5200 CLB

XC5200 Configurable
Function Generator

F
CE

CLR

D Q

CI

CO

CE CK CLR

DI

F4
F3
F2
F1

Q

DO
(.LC0)

LC2

LC3

LC1

F5_MUX

CY_MUX

Xilinx Device Families - ´´CIC Training Manual

XC5200 Interconnect Resources

X Hierarchical routing resources
• Logic cell feedthrough path
• VersaBlock routing

– Local interconnect matrix

– Direct connects
• GRM: general routing matrix

– Single-length lines

– Double-length lines
– Longlines
– Global lines

• VersaRing I/O interface

GRM

Versa-
Block

GRM

Versa-
Block

GRM

Versa-
Block

GRM

Versa-
Block

GRM

Versa-
Block

GRM

Versa-
Block

GRM

Versa-
Block

GRM

Versa-
Block

GRM

Versa-
Block

Xilinx Device Families - ´µCIC Training Manual

XC5200 VersaBlock & VersaRing

X VersaBlock
• Abundant local routing plus versatile logic
• 5 independent inputs & 3 outputs to each LC
• Each LC contains a direct feedthrough path

X VersaRing I/O interface
• Abundant connections from each IOB to the

nearest VersaBlock, in addition to Longline
connections surrounding the device

• Increase pin-locking flexibility

Xilinx Device Families - ´¶CIC Training Manual

Xilinx FPGA Family Comparison
Family XC3100A XC4000E/X Spartan/XL XC5200

Key Speed Speed Low Cost Low Cost

Feature Density Density Density

RAM RAM

Speed to 95 MHz to 66-100 MHz to 80 MHz to 50 MHz

Density 1K-7.5K gates 3K-250K gates 2K-40K gates 2K-23K gates

I/O 64-176 80-448 80-224 84-244

Flip-flops 256-1320 360-18400 360-2016 256-1936

Features 2 global clocks 4-8 global clocks 8 global clocks 4 global clocks

 Internal buses (same) (same) (same)

 Edge decode Cascade

Carry Carry Carry

Scan Scan Scan

RAM RAM

Xilinx Device Families - ´·CIC Training Manual

The Roadmap

X Xilinx FPGA roadmap
• High-density 2.5-V XC4000XV family (0.25um, 5 layer metal process, 2.5V)

– Up to 500,000 gates or higher
– 5-V, 3.3-V compatible

• High-density 2.5-V Virtex family (0.25um, 5 layer metal process, 2.5V)
– Alternative to system-level ASIC design
– 100+ MHz system performance

– Up to 1,000,000 system gates
– Highly flexible I/O buffers, multiple PLLs, dedicated 4-k bit, dual-ported SRAM blocks

• Low-cost XC5200XL family (0.35um, 3.3V)

– Up to 15,000 gates or higher
– 5-V compatible

Xilinx Device Families - ´¸CIC Training Manual

Density & Cost Roadmap

Logic Cells

Cost

7.5K0.4K

5,000 85,000 Logic Gates

XC4000XV

XC4000E

XC4000XL

Next Generation FPGAs: Virtex

XC4085XL XC40250XV 1M Gates

20.1K

250,000

3K

36,000

XC4036EX

XC5200

XC4000EX

XC5200XL

Xilinx Device Families - ´¹CIC Training Manual

Appendix: Virtex Architecture

HDL Design Flow & Tools - ²CIC Training Manual

HDL Design Flow & Tools
X FPGA Design Flow

• Design Ideas
• Detailed Design
• Functional Simulation

• Synthesis & Implementation
• Timing Simulation
• Device Programming

X Altera HDL Design Flow & Tools
X Xilinx HDL Design Flow & Tools
X A Simple Tutorial

HDL Design Flow & Tools - ³CIC Training Manual

FPGA/CPLD Design Flow

Detailed
Design

Design
Ideas

Device
Programming

Timing
Simulation

Synthesis &
Implementation

Functional
Simulation

t pd=22.1ns
f max=47.1MHz

FPGA
CPLD

HDL Design Flow & Tools - ´CIC Training Manual

Design Ideas

X What are the main design considerations?
• Design feasibility?
• Design spec?
• Cost?

• FPGA/CPLD or ASIC?
• Which FPGA/CPLD vendor?
• Which device family?

• Development time?

HDL Design Flow & Tools - µCIC Training Manual

Detailed Design

X Choose the design entry method
• Schematic

– Gate level design
– Intuitive & easy to debug

• HDL (Hardware Description Language), e.g. Verilog & VHDL
– Descriptive & portable
– Easy to modify

• Mixed HDL & schematic

X Manage the design hierarchy
• Design partitioning

– Chip partitioning
– Logic partitioning

• Use vendor-supplied libraries or parameterized libraries to reduce design time
• Create & manage user-created libraries (circuits)

HDL Design Flow & Tools - ¶CIC Training Manual

Functional Simulation

X Preparation for simulation
• Generate simulation patterns

– Waveform entry
– HDL testbench

• Generate simulation netlist

X Functional simulation
• To verify the functionality of your design only

X Simulation results
• Waveform display
• Text output

X Challenge
• Sufficient & efficient test patterns

HDL Design Flow & Tools - ·CIC Training Manual

HDL Synthesis

X Synthesis = Translation + Optimization
• Translate HDL design files into gate-level netlist
• Optimize according to your design constraints

– Area constraints

– Timing constraints
– Power constraints
– ...

X Main challenges
• Learn synthesizable coding style

• Write correct & synthesizable HDL design files
• Specify reasonable design constraints
• Use HDL synthesis tool efficiently

assign z=a&b
a
b

z

HDL Design Flow & Tools - ¸CIC Training Manual

Design Implementation

X Implementation flow
• Netlist merging, flattening, data base building
• Design rule checking
• Logic optimization

• Block mapping & placement
• Net routing
• Configuration bitstream generation

X Implementation results
• Design error or warnings

• Device utilization
• Timing reports

X Challenge
• How to reach high performance & high utilization implementation?

FPGA
CPLD

a
b

z

01011...

HDL Design Flow & Tools - ¹CIC Training Manual

Timing Analysis & Simulation

XTiming analysis
• Timing analysis is static, i.e., independent of input & output patterns
• To examine the timing constraints
• To show the detailed timing paths

• Can find the critical path

X Timing simulation
• To verify both the functionality & timing of the design

t pd=22.1ns
f max=47.1MHz

HDL Design Flow & Tools - ºCIC Training Manual

Device Programming

X Choose the appropriate configuration scheme
• SRAM-based FPGA/CPLD devices

– Downloading the bitstream via a download cable
– Programming onto a non-volatile memory device & attaching it on the circuit board

• OTP, EPROM, EEPROM or Flash-based FPGA/CPLD devices
– Using hardware programmer
– ISP

X Finish the board design
X Program the device
X Challenge

• Board design
• System considerations

FPGA
CPLD

HDL Design Flow & Tools - ²±CIC Training Manual

Our Focus: HDL Design Flow

X Why HDL?
• Can express digital systems in behavior or structure domain, shortening the design time
• Can support all level of abstraction, including algorithm, RTL, gate and switch level
• Both VHDL & Verilog are formal hardware description languages, thus portable

X Typical HDL design flow
• Use VHDL or Verilog to express digital systems

– VHDL or Verilog simulation tool is required to simulate your project
• Use high-level synthesis tool to obtain structural level design
• Then use FPGA placement & routing tools to obtain physical FPGA netlist

X We assume you are familiar with VHDL or Verilog...
• In this course, we’ll emphasize on FPGA HDL coding techniques for synthesis

– It’s the key issue to reduce area and achieve high performance for your project
• We assume you know how to use VHDL or Verilog simulator too

HDL Design Flow & Tools - ²²CIC Training Manual

Altera HDL Design Flow

Functional Simulation

Timing Simulation

Design Entry:
Verilog/VHDL

Design Verification
(Verilog-XL/VSS)

MAX+PLUS II
Compiler

Altera

Third-Party

HDL Synthesis
(FPGA Compiler)

MAX+PLUS II
Timing Analyzer

MAX+PLUS II
Programmer

Timing Analysis

Device Programming

Synthesis & Fitting,
Partitioning,

Placement, Routing

HDL Design Flow & Tools - ²³CIC Training Manual

Xilinx HDL Design Flow

Functional Simulation

Timing Simulation

Design Entry:
Verilog/VHDL

Design Verification
(Verilog-XL/VSS)

Alliance Series
XACT step M1

Xilinx

Third-Party

Logic Synthesis
(FPGA Compiler)

M1 Timing
Analyzer

M1 Hardware
Debugger

Timing Analysis

Device Programming

Optimization, Mapping,
Placement & Routing

HDL Design Flow & Tools - ²´CIC Training Manual

A Simple Tutorial

X Prepare Verilog or VHDL design files
X Perform Verilog or VHDL functional simulation
X Use Synopsys FPGA Compiler to synthesize your Verilog or VHDL

 codes
X Implement the design into the specified FPGA part
X Perform Verilog or VHDL timing analysis & simulation

HDL Design Flow & Tools - ²µCIC Training Manual

Design Entry

X Write HDL design files
• Must learn synthesizable RTL Verilog or VHDL coding style for the synthesis tool
• Tool: text editor

– xedit, textedit, vi, joe, ...

module converter(i3,i2,i1,i0,a,b,c,d,e,f,g);
 input i3, i2, i1, i0 ;
 output a, b, c, d, e, f, g;
 reg a,b,c,d,e,f,g;

 always @(i3 or i2 or i1 or i0) begin
 case({i3,i2,i1,i0})
 4'b0000: {a,b,c,d,e,f,g}=7'b1111110;
 4'b0001: {a,b,c,d,e,f,g}=7'b1100000;
 4'b0010: {a,b,c,d,e,f,g}=7'b1011011;
 4'b0011: {a,b,c,d,e,f,g}=7'b1110011;
 4'b0100: {a,b,c,d,e,f,g}=7'b1100101;
 4'b0101: {a,b,c,d,e,f,g}=7'b0110111;
 4'b0110: {a,b,c,d,e,f,g}=7'b0111111;
 4'b0111: {a,b,c,d,e,f,g}=7'b1100010;
 4'b1000: {a,b,c,d,e,f,g}=7'b1111111;
 4'b1001: {a,b,c,d,e,f,g}=7'b1110111;
 4'b1010: {a,b,c,d,e,f,g}=7'b1101111;
 4'b1011: {a,b,c,d,e,f,g}=7'b0111101;
 4'b1100: {a,b,c,d,e,f,g}=7'b0011110;
 4'b1101: {a,b,c,d,e,f,g}=7'b1111001;
 4'b1110: {a,b,c,d,e,f,g}=7'b0011111;
 4'b1111: {a,b,c,d,e,f,g}=7'b0001111;
 endcase
 end

endmodule

library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity converter is
port (i3, i2, i1, i0: in STD_LOGIC;
 a, b, c, d, e, f, g: out STD_LOGIC);
end converter;

architecture case_description of converter is
begin
 P1: process(i3, i2, i1, i0)
 variable tmp_in: STD_LOGIC_VECTOR(3 downto 0);
 begin
 tmp_in := i3 & i2 & i1 & i0;
 case tmp_in is
 when "0000" => (a,b,c,d,e,f,g) <= STD_LOGIC_VECTOR'("1111110");
 when "0001" => (a,b,c,d,e,f,g) <= STD_LOGIC_VECTOR'("1100000");
 when "0010" => (a,b,c,d,e,f,g) <= STD_LOGIC_VECTOR'("1011011");
 when "0011" => (a,b,c,d,e,f,g) <= STD_LOGIC_VECTOR'("1110011");
 when "0100" => (a,b,c,d,e,f,g) <= STD_LOGIC_VECTOR'("1100101");
 when "0101" => (a,b,c,d,e,f,g) <= STD_LOGIC_VECTOR'("0110111");
 when "0110" => (a,b,c,d,e,f,g) <= STD_LOGIC_VECTOR'("0111111");
 when "0111" => (a,b,c,d,e,f,g) <= STD_LOGIC_VECTOR'("1100010");
 when "1000" => (a,b,c,d,e,f,g) <= STD_LOGIC_VECTOR'("1111111");
 when "1001" => (a,b,c,d,e,f,g) <= STD_LOGIC_VECTOR'("1110111");
 when "1010" => (a,b,c,d,e,f,g) <= STD_LOGIC_VECTOR'("1101111");
 when "1011" => (a,b,c,d,e,f,g) <= STD_LOGIC_VECTOR'("0111101");
 when "1100" => (a,b,c,d,e,f,g) <= STD_LOGIC_VECTOR'("0011110");
 when "1101" => (a,b,c,d,e,f,g) <= STD_LOGIC_VECTOR'("1111001");
 when "1110" => (a,b,c,d,e,f,g) <= STD_LOGIC_VECTOR'("0011111");
 when "1111" => (a,b,c,d,e,f,g) <= STD_LOGIC_VECTOR'("0001111");
 when others => (a,b,c,d,e,f,g) <= STD_LOGIC_vector'("0000000");
 end case;
 end process P1;
end case_description;

HDL Design Flow & Tools - ²¶CIC Training Manual

HDL Functional Simulation

X Write HDL testbench files
X Prepare technology-dependent simulation model, if necessary
X Verilog functional simulation

• Tool: Verilog simulator
)Cadence Verilog-XL
– Viewlogic VCS

X VHDL functional simulation
• Tool: VHDL simulator

)Synopsys VSS

– Viewlogic SpeedWave
– Cadence LeapFrog

HDL Design Flow & Tools - ²·CIC Training Manual

Verilog Functional Simulation

HDL Design Flow & Tools - ²¸CIC Training Manual

VHDL Functional Simulation

HDL Design Flow & Tools - ²¹CIC Training Manual

HDL Synthesis

X Prepare synthesis library
X Transfer HDL design file into gate-level netlist

• Tool: HDL synthesis software
)Synopsys: Design Analyzer, HDL/VHDL Compiler & FPGA Compiler
– Viewlogic ViewSynthesis (for VHDL only)

– Cadence Synergy
• Generate EDIF netlist file (*.edf) for Altera design
• Generate XNF netlist files (*.sxnf) for Xilinx design

HDL Design Flow & Tools - ²ºCIC Training Manual

LUT Optimization for Altera

LUT

HDL Design Flow & Tools - ³±CIC Training Manual

Gate-Level Netlist for Altera

HDL Design Flow & Tools - ³²CIC Training Manual

LUT Optimization for Xilinx

CLB & IOB

HDL Design Flow & Tools - ³³CIC Training Manual

Gate-Level Netlist for Xilinx

HDL Design Flow & Tools - ³´CIC Training Manual

FPGA Implementation

X Gate-level netlist -> configuration bitstream & timing information
• Altera development tool: Altera MAX+PLUS II software

– MAX+PLUS II Compiler
– MAX+PLUS II Floorplan Editor

• Xilinx development tool: Xilinx XACTstep M1 software
– Xilinx Design Manager
– Flow Engine

– EPIC Design Editor

HDL Design Flow & Tools - ³µCIC Training Manual

Altera Implementation

HDL Design Flow & Tools - ³¶CIC Training Manual

Xilinx Implementation

HDL Design Flow & Tools - ³·CIC Training Manual

Timing Analysis

X Check critical timing path & clock rate
• Altera timing analysis tool: Altera MAX+PLUS II Timing Analyzer
• Xilinx timing analysis tool: Xilinx Timing Analyzer

HDL Design Flow & Tools - ³¸CIC Training Manual

Altera Timing Analysis

HDL Design Flow & Tools - ³¹CIC Training Manual

Xilinx Timing Analysis

HDL Design Flow & Tools - ³ºCIC Training Manual

Timing Simulation

X Generate timing HDL files and delay back-annotation files
• Altera tool: MAX+PLUS II Compiler
• Xilinx tool: ngdanno, ngd2vhd, ngd2ver utilities

X Prepare testbench files
X Prepare technology-dependent simulation model, if necessary
X Verilog timing simulation

• Tool: Verilog simulator

X VHDL timing simulation
• Tool: VHDL simulator

HDL Design Flow & Tools - ´±CIC Training Manual

Verilog Timing Simulation

HDL Design Flow & Tools - ´²CIC Training Manual

VHDL Timing Simulation

HDL Design Flow & Tools - ´³CIC Training Manual

Device Programming

X Prepare the configuration bitstream file
X Configure FPGA device(s)

• By downloading the configuration bitstream via a download cable
• By programming the configuration bitstream onto a non-volatile memory device & attaching

it on the circuit board

download cable

FPGA

output display

HDL Coding Hints: Generic Coding Techniques & Considerations - ²CIC Training Manual

HDL Coding Hints
Generic Coding Techniques & Considerations

X HDL Synthesis Subset
X HDL Coding Techniques & Examples
X Considerations for Synthesis

HDL Coding Hints: Generic Coding Techniques & Considerations - ³CIC Training Manual

HDL Synthesis Subset

X Verilog & VHDL are hardware description and simulation language
 and was not originally intended as an input to synthesis

• Many hardware description and simulation constructs are not supported by synthesis tools
• Various synthesis tools use different subset of HDL -- synthesis subset

– Each synthesis tool has its own synthesis subset

• Up to now, most synthesis tools can read, translate & optimize RTL (Register-Transfer
Level) HDL well

– Behavioral synthesis is under development

Full language set

Synthesis subset

HDL Coding Hints: Generic Coding Techniques & Considerations - ´CIC Training Manual

RTL Coding Style

process()
begin

end process;

process()
begin

end process;

Combinational process Clocked process

HDL Coding Hints: Generic Coding Techniques & Considerations - µCIC Training Manual

RTL Modeling Issues

X Consider implementation effects
• Propagation delays
• Signal glitches

X Define registers (synchronous)
• Store values

• Clocking
• Reset
• Amount of logic between flip-flops

X Operations must be scheduled

HDL Coding Hints: Generic Coding Techniques & Considerations - ¶CIC Training Manual

Synopsys Verilog/VHDL
Synthesis Subset

X We are going to learn Synopsys Verilog/VHDL synthesis subset
• Synopsys RTL coding style is widely accepted as a guideline to write a synthesizable

Verilog or VHDL design file
– Learning Synopsys Verilog or VHDL coding style can get the best synthesis results

– It also can help avoid synthesis mismatch with simulation

HDL Coding Hints: Generic Coding Techniques & Considerations - ·CIC Training Manual

Synopsys RTL Synthesis Tools

X Design Analyzer
• User graphical interface of Synopsys synthesis tool

X HDL Compiler
• Translate Verilog descriptions into Design Compiler/FPGA Compiler

X VHDL Compiler
• Translate VHDL descriptions into Design Compiler/FPGA Compiler

X Design Compiler
• Constraint-driven logic optimizer

X FPGA Compiler
• Design Compiler Family synthesis tool that targets FPGA technologies
• Optimization for LUT architectures

HDL Coding Hints: Generic Coding Techniques & Considerations - ¸CIC Training Manual

HDL Coding Techniques

X Why we need to learn HDL coding techniques?
• The designer has maximum influence on the final performance & density of the target

device in the original coding style of the HDL
• The effect of coding style on final circuit performance can be very dramatic

– In some cases, circuit speed can be improved by a factor of three and utilization
by a factor of two by making simple changes to source code

• Ideally, you should code the design as abstractly as possible to preserve technology
independence

– However, the design can become faster and smaller as you design closer to the
specific technology or device architecture

HDL Coding Hints: Generic Coding Techniques & Considerations - ¹CIC Training Manual

Naming Conventions for Identifiers

X User-defined names can not violate HDL naming rules
• Using HDL keywords as identifiers for objects is not allowed

X FPGA tools may have other limitations on the character set
• You should ordinarily use identifiers consisting of letters and digits, with underscores (“_”)

included where necessary to separate parts of a name
– Do not use “/”, “-”, “$”, “<”, “>” as name separator

– FPGA resource names are reserved and should not be used

HDL Coding Hints: Generic Coding Techniques & Considerations - ºCIC Training Manual

Case Considerations

X FPGA tools may use formats in which case does not matter
• Although Verilog considers upper and lower case letters to be different, you should not have

tow identifiers in the same Verilog module that differ only in case
– For example, don’t name one module “adder” and another one “Adder”

HDL Coding Hints: Generic Coding Techniques & Considerations - ²±CIC Training Manual

Omitting Delay Statements

X Avoid using any delay statements to create code that simulates the
 same way before and after synthesis

• Synthesis tools always ignore delay statements
• Do not use delay statement in the design files

– Do not use VHDL wait for xx ns or after xx ns statement

– Do not use Verilog # delay token

HDL Coding Hints: Generic Coding Techniques & Considerations - ²²CIC Training Manual

Omitting Initial Values

X Do not assign signals and variables initial values to avoid
 synthesis mismatch with simulation

• Most synthesis tools will ignore signal and variable initial values
• For flip-flops, use clear or reset signal to initialize their values

HDL Coding Hints: Generic Coding Techniques & Considerations - ²³CIC Training Manual

Creating Readable Code

X Create code that is easy to read, debug and maintain
• Indent blocks of code to align related statements
• Use empty lines to separate top-level constructs, designs, architecture, process, ...
• Use space to make your code easier to read

• Break long lines of code at an appropriate point or a colon
• Add comments to your code

HDL Coding Hints: Generic Coding Techniques & Considerations - ²´CIC Training Manual

Using Labels

X Use labels to group logic
• You can use optional labels on flow control constructs to make the code structure more

obvious
– However, the labels are not exactly translated to gate or register names in your

implemented design
• It’s suggested to label all VHDL processes, functions, and procedures and Verilog blocks

HDL Coding Hints: Generic Coding Techniques & Considerations - ²µCIC Training Manual

Ordering & Grouping
Arithmetic Functions

X The ordering & grouping of arithmetic functions may influence
 design performance, depending on the bit width of input signals

• Example1 (VHDL): SUM <= A1 + A2 + A3 + A4;
Example2 (VHDL): SUM <= (A1 + A2) + (A3 + A4);

– Example1 cascades 3 adders in series
– Example2 creates two adders in parallel: (A1+A2) and (A3 + A4), and the results are

combined with a third adder
A1 A2

A4

A3

SUM

A1 A2 A3 A4

SUM

HDL Coding Hints: Generic Coding Techniques & Considerations - ²¶CIC Training Manual

Synopsys DesignWare Library

X Synopsys DesignWare parts are ready to use
• Predefined, synthesizable resource blocks for ALU, mathematics, sequential, data integrity

operations
– These blocks facilitate the designer's ability to perform more high-level design trade-

offs, and spend less time focusing on detailed design
• DesignWare components can be invoked by inference or instantiation

– Default DesignWare component: adder, substractor, comparator and multiplier circuit
will be inferred automatically by Synopsys

– Foundation DesignWare library (DW01 through DW05)
• DesignWare component is scaleable, technology-independent

– The implementation of DesignWare component is decided by the optimization
constraints

• Most FPGA vendors provide their own DesignWare library too
– You can use it to obtain the optimal performance and increase the accuracy of the

area and timing prediction

HDL Coding Hints: Generic Coding Techniques & Considerations - ²·CIC Training Manual

VHDL IEEE Library

X Available packages for synthesis in the Synopsys IEEE library
• std_logic_1164
• std_logic_arith
• std_logic_unsigned

• std_logic_signed

HDL Coding Hints: Generic Coding Techniques & Considerations - ²¸CIC Training Manual

VHDL Data Type

X Std_logic (IEEE 1164) type is recommended for synthesis
• This type is effective for hardware descriptions because it has nine different values
• Std_logic type is automatically initialized to an unknown value

– It forces you to initialize your design to a known state

– Do not override this feature by initializing signals and variables to a known value when
they are declared because the result may be a gate-level circuit that cannot be
initialized to a known value

• Use Std_logic package for all entity port declarations to make it easier to integrate the
synthesized netlist back into the design hierarchy without requiring conversion functions for
the ports

HDL Coding Hints: Generic Coding Techniques & Considerations - ²¹CIC Training Manual

VHDL Buffer Port Declaration

X Minimize the use of ports declared as buffers
• Declare a buffer when a signal is used internally and as an output port

– Every level of hierarchy in your design that connects to a buffer port must be declared
as a buffer

• To reduce the amount of coding in hierarchical designs, you may insert a dummy signal and
declare the port as an output

– It's often the best method because it does not artificially create a bidirectional port

P1: process begin
 wait until CLK’event and CLK = '1';
 C <= A + B + C;
end process P1;

C <= C_INT;
P1: process begin
 wait until CLK’event and CLK = '1';
 C_INT <= A + B + C_INT;
end process P1;

HDL Coding Hints: Generic Coding Techniques & Considerations - ²ºCIC Training Manual

VHDL Signals & Variables

X Compare signals and variables
• Signals are similar to hardware and are not updated until the end of a process
• Variables are immediately updated

– They can mask glitches that may impact how your design functions

• It's better to use signals for hardware descriptions
– However, variables allow quick simulation

HDL Coding Hints: Generic Coding Techniques & Considerations - ³±CIC Training Manual

VHDL Variable Assignments

X VHDL variable assignments execute in zero simulation time
• The value of a variable assignment takes effect immediately after execution of the

assignment statement

architecture BEHAV of SHIFTER is
begin

 VAR_ASSIGNMENT: process(CLK)

 variable VAR_D: STD_LOGIC;

 begin
 if (CLK'EVENT and CLK = '1') then
 VAR_D := D;
 Q <= VAR_D;
 end if;
 end process VAR_ASSIGNMENT;

end BEHAV;

qd

clk

The variable VAR_D is optimized.

HDL Coding Hints: Generic Coding Techniques & Considerations - ³²CIC Training Manual

VHDL Signal Assignments

X VHDL signal assignments evaluate the right side expression and
 cause the simulator to schedule an update of the target

• The actual assignment takes effect only after an actual or implied, (such as in a process with
a sensitivity list), WAIT statement

architecture BEHAV of SHIFTER is

 signal SIG_D: STD_LOGIC;

begin

 SIG_ASSIGNMENT: process(CLK)
 begin
 if (CLK'EVENT and CLK = '1') then
 SIG_D <= D;
 Q <= SIG_D;
 end if;
 end process SIG_ASSIGNMENT;

end BEHAV;

QD

CLK

SIG_D

HDL Coding Hints: Generic Coding Techniques & Considerations - ³³CIC Training Manual

Verilog Procedural Assignments

X Blocking procedural assignment (=)
• The assignment is executed before the statement following the assignment is executed
• This is a very essential form of assignment that should be used in testbenches

X Non-blocking procedural assignment (<=)
• Non-blocking assignments allow the simulator to schedule assignments without blocking the

procedural flow

– The assignments are performed within the same time step without any order
dependence

• This is a very essential form of assignment that should be used in all design modules

HDL Coding Hints: Generic Coding Techniques & Considerations - ³´CIC Training Manual

Verilog Blocking Assignments

X Verilog immediately assign the values in blocking assignments

module nbk1(q, d, clk);

input d, clk;
output q;

reg q, bk_d;

always @(posedge clk) begin
 bk_d = d;
 q = bk_d;
end

endmodule

qd

clk

The reg bk_d is optimized.

HDL Coding Hints: Generic Coding Techniques & Considerations - ³µCIC Training Manual

Verilog Non-Blocking Assignments

X Verilog schedules the update of the target in non-blocking
 assignments

module nbk2(q, d, clk);

input d, clk;
output q;

reg q, nbk_d;

always @(posedge clk) begin
 nbk_d <= d;
 q <= nbk_d;
end

endmodule

qd

clk

nbk_d

HDL Coding Hints: Generic Coding Techniques & Considerations - ³¶CIC Training Manual

Component Instantiation

X Named association vs. positional association
• Use positional association in function and procedures calls and in port lists only when you

assign all items in the list
• Use named association when you assign only some of the items in the list

• Using named association is suggested

HDL Coding Hints: Generic Coding Techniques & Considerations - ³·CIC Training Manual

Positional Association

X The signals are connected up in the order in which the ports were
 declared

-- VHDL example

architecture STRUCT of INC is

 signal X,Y,S,C : bit;

 component FADD
 port(A,B : in bit;
 SUM, CARRY : out bit);
 end component;

begin

U1: FADD port map (X,Y,S,C);

-- other statements

end STRUCT;

// Verilog example

module fadd(a, b, sum, carry);
 :
 :
 :
endmodule

module inc(...)
 :
 :
wire x, y, s, c;
 :
 :
fadd u1(x,y,s,c);
 :
// other statements

endmodule

HDL Coding Hints: Generic Coding Techniques & Considerations - ³¸CIC Training Manual

Named Association

X The signals are connected up where the ports are explicitly
 referenced and order is not important

-- VHDL example

architecture STRUCT of INC is
 signal X,Y,S,C : bit;

 component FADD
 port(A,B : in bit;
 SUM, CARRY : out bit);
 end component;

begin

ADDER1: FADD port map
 (B => Y, A => X, SUM => S, CARRY => C);

-- other statements

end STRUCT;

// Verilog example

module fadd(a, b, sum, carry);
 :
 :
 :
endmodule

module inc(...)
 :
 :
wire x, y, s, c;
 :
 :
fadd adder1(.a(x), .b(y), .sum(s), .carry(c));
 :
// other statements

endmodule

HDL Coding Hints: Generic Coding Techniques & Considerations - ³¹CIC Training Manual

Using Parentheses

X Use parentheses efficiently
• You may use parentheses to control the structure of a complex design

// Verilog -- VHDL
assign z1 = a + b + c + d; Z1 <= A + B + C + D;
assign z2 = (w + x) + (y + z) ; Z2 <= (W + X) + (Y + Z) ;

a b

d

c

z1

w x y z

z2

HDL Coding Hints: Generic Coding Techniques & Considerations - ³ºCIC Training Manual

Specifying Bit-Width

X Use operator bit-width efficiently
• You may directly specify the operand bits to reduce area

// Verilog -- VHDL, must use std_logic_unsigned package
input [7:0] a, b; A, B: in STD_LOGIC_VECTOR(7 downto 0);
output [7:0] z1, z2; Z1, Z2: out STD_LOGIC_VECTOR(8 downto 0);

...
assign z1 = a + b; Z1 <= '0' &A + B;
assign z2 = a + b [4:0] ; Z2 <= '0' &A + B (4 downto 0) ;

HDL Coding Hints: Generic Coding Techniques & Considerations - ´±CIC Training Manual

Level-Sensitive Latches

X Level-sensitive latch
• A variable assigned within an always block that is not fully specified in all branches will infer

a latch
• In some FPGA devices, latches are not available in the logic function block

– Latches described in RTL HDL are implemented with gates, and will result in
combination loops and hold-time requirements

HDL Coding Hints: Generic Coding Techniques & Considerations - ´²CIC Training Manual

Latch Inference - Verilog

// Ex1. simple D-latch
always @(datain or enable)
begin
 if (enable) dataout = datain;
end

// Ex2. simple D-latch with active-low RESET
always @(datain or enable or reset)
begin
 if (!reset) dataout = 0;
 else if (enable) dataout = datain;
end

HDL Coding Hints: Generic Coding Techniques & Considerations - ´³CIC Training Manual

Latch Inference - VHDL

-- Ex1. simple D-latch
DLAT: process(DATAIN, ENABLE)
begin
 if (ENABLE = '1') then DATAOUT <= DATAIN;
 end if;
end process DLAT;

-- Ex2. simple D-latch with active-low RESET
DLAT_R: process(DATAIN, ENABLE, RESET)
begin
 if (RESET = '0') then DATAOUT <= '0';
 elsif (ENABLE = '1') then DATAOUT <= DATAIN;
 end if;
end process DLAT_R;

HDL Coding Hints: Generic Coding Techniques & Considerations - ´´CIC Training Manual

Edge-Sensitive D Flip-Flops

X Edge-sensitive D flip-flops
• In contrast to latches, flip-flops(registers) are inferred by the detection of the clock edge

– Verilog: @(posedge clk) or @(negedge clk) in a always block
– VHDL: (clk'event and clk = '1') or (clk'event and clk = '0')

HDL Coding Hints: Generic Coding Techniques & Considerations - ´µCIC Training Manual

D Flip-Flop Inference - Verilog

// Ex1. simple DFF
always @(posedge clk)
begin
 dataout = datain;
end

// Ex2. DFF with asynchronous active-low RESET
always @(posedge clk or negedge reset)
begin
 if (!reset) dataout = 0;
 else dataout = datain;
end

// Ex3. DFF with synchronous active-low RESET
always @(posedge clk)
begin
 if (!reset) dataout = 0;
 else dataout = datain;
end

// Ex4. DFF with active-high clock ENABLE
always @(posedge clk)
begin
 if (enable) dataout = datain;
end

HDL Coding Hints: Generic Coding Techniques & Considerations - ´¶CIC Training Manual

D Flip-Flop Inference - VHDL

-- Ex1. simple DFF
DFF1: process(CLK)
begin
 if (CLK'EVENT and CLK = '1') then DATAOUT <= DATAIN;
 end if;
end process DFF1;

-- Ex2. DFF with asynchronous active-low RESET
DFF2_R: process(RESET, CLK)
begin
 if (RESET = '0') then DATAOUT <= '0';
 elsif (CLK'EVENT and CLK = '1') then DATAOUT <= DATAIN;
 end if;
end process DFF2_R;

-- Ex3. DFF with synchronous active-high ENABLE
DFF3_EN: process(CLK)
begin -- Another style
 if (CLK'EVENT and CLK = '1') then -- if (ENABLE = '0') then null ;
 if (ENABLE = '1') then DATAOUT <= DATAIN; -- elsif (CLK'EVENT and CLK = '1) then
 end if; -- DATAOUT <= DATAIN;
 end if; -- end if;
end process DFF3_EN;

HDL Coding Hints: Generic Coding Techniques & Considerations - ´·CIC Training Manual

Output Pad Tri-State Buffers

X Output pad tri-state buffers
• Output tri-state buffers are available in I/O block of FPGA devices

– To drive an output port
– To drive internal logic connected to an inout port

• Can implement tri-state registered output in some FPGA architectures
– The flip-flop must directly drive the 3-state signal

HDL Coding Hints: Generic Coding Techniques & Considerations - ´¸CIC Training Manual

Tri-State Buffer Inference - Verilog

// Ex1. Output pad tri-state buffers (for top-level output port)
assign out1 = (oe1) ? data1 : 1’bz ;

// Ex2. Bidirectional pad
assign io1 = (oe1) ? data1 : 1’bz ;
assign data2 = io1 & in1 & in2;

// Ex3. 3-state registered output
always @(posedge clk) bus_q = data3;
always @(oe2 or bus_q) begin
 if (!oe2) bus_out = bus_q;
 else bus_out = 1’bz ;
end

HDL Coding Hints: Generic Coding Techniques & Considerations - ´¹CIC Training Manual

Tri-State Buffer Inference - VHDL

-- Ex1. Output pad tri-state buffers (for top-level output port)
TRI1: process(DATA1, OE1)
begin
 if (OE1 = '1') then OUT1 <= DATA1;
 else OUT1 <= 'Z' ;
 end if;
end process TRI1;

-- Ex2. Bidirectional pad
TRI2: process(DATA1, OE1)
begin
 if (OE1 = '1') then IO1 <= DATA1; -- IO1 is declared as an inout port
 else IO1 <= 'Z' ;
 end if;
end process TRI2;
DATA2 <= IO1 & IN1 & IN2;

-- Ex3. 3-state registered output
TRI_REG: process(CLK)
begin
 if (CLK'EVENT and CLK = '1') then BUS_Q <= DATA3;
 end if;
end process TRI_REG;
BUS_OUT <= BUS_Q when (OE2 = '0') else 'Z' ;

HDL Coding Hints: Generic Coding Techniques & Considerations - ´ºCIC Training Manual

Internal Tri-State Buses

X Internal tri-state buses
• Xilinx devices support many internal tri-state buffers

– Easy to implement bus functions
– Can be used to implement some wide functions

– Xilinx internal tri-state buffers (TBUFs) are active-low enable
• Altera tri-state emulation

– Altera devices do not support internal tri-state buffers

– Altera software will convert internal tri-state buffers into multiplexers

HDL Coding Hints: Generic Coding Techniques & Considerations - µ±CIC Training Manual

Tri-State Bus Inference - Verilog

// Ex1. Internal tri-state buffers
assign busa = (!oe_a) ? a : 8’bz ;
assign busa = (!oe_b) ? b : 8’bz ;

HDL Coding Hints: Generic Coding Techniques & Considerations - µ²CIC Training Manual

Tri-State Bus Inference - VHDL

-- Ex1. Internal tri-state buffers
BUS_IN1: process(A, OE_A)
begin
 if (OE_A = '0') then BUSA <= A;
 else BUSA <= "ZZZZZZZZ" ;
 end if;
end process BUS_IN1;

BUS_IN2: process(B, OE_B)
begin
 if (OE_B = '0') then BUSA <= B;
 else BUSA <= "ZZZZZZZZ" ;
 end if;
end process BUS_IN2;

HDL Coding Hints: Generic Coding Techniques & Considerations - µ³CIC Training Manual

Using If Statements

X Use if statements
• If statement provides more complex conditional actions
• An if statement generally builds a priority encoder that gives the shortest path delay to the

first branch in the if statement

• You must specify all the branches in a if statement, otherwise Synopsys may infer latches
• Do not use deeply nested if statement

– Improper use of the nested-if statement can result in an increase in area and longer
delays in your designs

HDL Coding Hints: Generic Coding Techniques & Considerations - µ´CIC Training Manual

If Statement Examples - Verilog

// Ex1. Use if statements
always @(a or b or c or d or e or f or g or sel)
begin
 if (sel == 3'b000) mux_out = a;
 else if (sel == 3'b001) mux_out = b;
 else if (sel == 3'b010) mux_out = c;
 else if (sel == 3'b011) mux_out = d;
 else if (sel == 3'b100) mux_out = e;
 else if (sel == 3'b101) mux_out = f;
 else if (sel == 3'b110) mux_out = g;
 else mux_out = 1'b0;
end

HDL Coding Hints: Generic Coding Techniques & Considerations - µµCIC Training Manual

If Statement Examples - VHDL

-- Ex1. use if statement
IF_1: process (A,B,C,D,E,F,G,SEL)
begin
 if (SEL = "000") then MUX_OUT <= A;
 elsif (SEL = "001") then MUX_OUT <= B;
 elsif (SEL = "010") then MUX_OUT <= C;
 elsif (SEL = "011") then MUX_OUT <= D;
 elsif (SEL = "100") then MUX_OUT <= E;
 elsif (SEL = "101") then MUX_OUT <= F;
 elsif (SEL = "110") then MUX_OUT <= G;
 else mux_out <= '0';
 end if ;
end process IF_1;

HDL Coding Hints: Generic Coding Techniques & Considerations - µ¶CIC Training Manual

Using Case Statements

X Use case statements
• A case statement generally builds a multiplexer, where all the paths have similar delays
• If a case statement is not a “full case”, it will infer latches

– Use default statements or use “don't care” inference

• If Synopsys can’t determine that case branches are parallel, it may build a priority decoder

HDL Coding Hints: Generic Coding Techniques & Considerations - µ·CIC Training Manual

Case Statement Examples - Verilog

// Ex1. Use case and default statements
always @(a or b or c or d or e or f or g or sel)
begin
 case (sel)
 3'b000: mux_out = a;
 3'b001: mux_out = b;
 3'b010: mux_out = c;
 3'b011: mux_out = d;
 3'b100: mux_out = e;
 3'b101: mux_out = f;
 3'b110: mux_out = g;
 default : mux_out = 1'b0; // You may assign to 1'bx for specifying a don't care
 endcase
end

// Ex2. Use don’t cares in case statements
always @(bcd) begin
 case (bcd)
 4’d0: bout = 3’b001;
 4’d1: bout = 3’b010;
 4’d2: bout = 3’b100;
 default : bout = 3’bxxx ;
 endcase
end

HDL Coding Hints: Generic Coding Techniques & Considerations - µ¸CIC Training Manual

Case Statement Examples - VHDL

-- Ex1. Use case & default statements
CASE_1P: process (A,B,C,D,E,F,G,SEL)
begin
 case SEL is
 when "000" => MUX_OUT <= A;
 when "001" => MUX_OUT <= B;
 when "010" => MUX_OUT <= C;
 when "011" => MUX_OUT <= D;
 when "100" => MUX_OUT <= E;
 when "101" => MUX_OUT <= F;
 when "110" => MUX_OUT <= G;
 when others => MUX_OUT <= '0'; -- You may assign a '-' for specifying a don't care
end case;
end process CASE_1P;

-- Ex2. Use don't cares in case statements
CASE_2P: process (BCD)
begin
 case BCD is
 when "0000" => BOUT <= "001";
 when "0001" => BOUT <= "010";
 when "0010" => BOUT <= "100";
 when others => BOUT <= "---" ;
 end case ;
end process CASE_2P;

HDL Coding Hints: Generic Coding Techniques & Considerations - µ¹CIC Training Manual

The full_case Directive

X You can attach the full_case directive to tell the synthesis tool
 the Verilog case item expressions cover all the possible cases

• Synopsys does not do an exhaustive data flow analysis for the case statements, and so
cannot tell that all the possible case items have been enumerated

– Consequently, Synopsys implements extra logic to keep the value when it has some
values other than those listed in the case statements

• If you you are sure the unspecified branches will never occur, you may use Synopsys
full_case directive to specify a full case in Verilog and eliminate the extra logic

– The full_case directive should appear immediately following the test expression of
the case statement

• It is recommended that you still use full_case if the case items do not include a
default item

– This may improve the efficiency of the synthesis process

HDL Coding Hints: Generic Coding Techniques & Considerations - µºCIC Training Manual

The parallel_case Directive

X Attach the parallel_case directive to improve the efficiency if no
 two case item expressions ever match the test expression at the
 same time

• You may use Synopsys parallel_case to specify a parallel case in Verilog, which force
to generate multiplexer logic instead of priority decoder

– The full_case directive should appear immediately following the test expression of
the case statement

HDL Coding Hints: Generic Coding Techniques & Considerations - ¶±CIC Training Manual

Using full_case & parallel_case
module johnson (clock, reset, count);

input clock, reset;
output [2:0] count;

wire clock, reset;
reg [2:0] count;

always @(negedge clock or posedge reset)
 if (reset == 1'b1)
 count <= 3'b000;
 else
 case (count) // synopsys full_case parallel_case
 3'b000: count <= 3'b001;
 3'b001: count <= 3'b011;
 3'b011: count <= 3'b111;
 3'b111: count <= 3'b110;
 3'b110: count <= 3'b100;
 3'b100: count <= 3'b000;
 endcase

endmodule

HDL Coding Hints: Generic Coding Techniques & Considerations - ¶²CIC Training Manual

Using For Loop Statements

X Use For loop statements
• Use for loop to duplicate statement

– Loop index variable must be integer type
– Step, start & end value must be constant

HDL Coding Hints: Generic Coding Techniques & Considerations - ¶³CIC Training Manual

For Loop Statement Examples - Verilog

-- Ex1. parity tree
always @(word)
begin
 is_odd = 0;
 for (i=0; i<=7; i=i+1) begin
 is_odd = is_odd xor word[i];
 end
end

assign parity = is_odd;

HDL Coding Hints: Generic Coding Techniques & Considerations - ¶´CIC Training Manual

For Loop Statement Examples - VHDL

-- Ex1. parity tree
FOR_1: process (WORD)
 variable IS_ODD: STD_LOGIC;
begin
 IS_ODD := '0';
 LOOP1: for I in 0 to 7 loop
 IS_ODD := IS_ODD xor WORD(I);
 end loop LOOP1;
 PARITY <= IS_ODD;
end process FOR_1;

HDL Coding Hints: Generic Coding Techniques & Considerations - ¶µCIC Training Manual

Designing Counters

X Counters can be built by inference or instantiation
• Infer a simple counter

– Synopsys will build it out of gates
• Infer a Synopsys DesignWare counter

• Instantiate the scaleable Synopsys DesignWare counter: DW03_updn_ctr or others
• Instantiate the optimized counter macrofunctions provided by FPGA vendors

HDL Coding Hints: Generic Coding Techniques & Considerations - ¶¶CIC Training Manual

Counter Examples - Verilog

// Ex1. Infer a lodable up-down counter with asynchronous reset
always @(negedge reset or posedge clk)
begin : upcnt_1
 if (!reset) count = 8'b00000000;
 else if (load) count = datain;
 else if (en)
 if (updn) count = count + 1;
 else count = count - 1;
end
assign dataout = count;

// Ex2. Instantiate a DesignWare counter
DW03_updn_ctr # (8) U0 (.data(datain), .load(load), .up_dn(updn),
 .cen(en), .clk(clk), .reset(reset), .count(dataout));

HDL Coding Hints: Generic Coding Techniques & Considerations - ¶·CIC Training Manual

Counter Examples - VHDL

-- Ex1. Infer a lodable up-down counter with asynchronous reset
UPCNT_1: process(RESET, CLK)
begin
 if (RESET = '0') then COUNT <= "00000000";
 elsif (CLK'EVENT and CLK = '1') then
 if (LOAD = '1') then COUNT <= DATAIN;
 elsif (EN = '1') then
 if (UPDN = '1') then COUNT <= COUNT + 1;
 else COUNT <= COUNT - 1;
 end if;
 end if;
 end if;
 DATAOUT <= COUNT;
end process UPCNT_1;

-- Ex2. Instantiate a DesignWare counter
-- DW03 library and package must be included for simulation and synthesis
U0: DW03_updn_ctr
 generic map (width => 8)
 port map (data => DATAIN, load => LOAD, up_dn => UPDN, cen => EN, clk => CLK,
 reset => RESET, count => DATAOUT);

HDL Coding Hints: Generic Coding Techniques & Considerations - ¶¸CIC Training Manual

Designing Multipliers

X Design multipliers
• Infer a simple, non-DesignWare multiplier using the HDL operator “* ”, which will be built out

of gates and optimized
• Instantiate the multiplier as a sequence of adders, each of which can be mapped to the

DesignWare adder
• Instantiate Synopsys DesignWare multiplier, DW02_mult or others
• Instantiate the optimized multiplier macrofunctions provided by FPGA vendors

HDL Coding Hints: Generic Coding Techniques & Considerations - ¶¹CIC Training Manual

Multiplier Examples - Verilog

// Ex1. Infer a simple non-pipelined multiplier
assign multout = a * b;

// Instantiate DW02_mult_5_stage
DW02_mult_5_stage #(8,8) U1(in1,in2,control,clk,product);

HDL Coding Hints: Generic Coding Techniques & Considerations - ¶ºCIC Training Manual

Multiplier Examples - VHDL

-- Ex1. Infer a simple non-pipelined multiplier
multout <= a * b;

-- Instantiate DW02_mult_5_stage
U1: DW02_mult_5_stage
 generic map(A_width => 8, B_width => 8)
 port map(A => in1, B => in2, TC => control, CLK => clk, PRODUCT => product);

HDL Coding Hints: Generic Coding Techniques & Considerations - ·±CIC Training Manual

Designing FSMs

X Design FSMs (Finite State Machines)
• A FSM is a design that has a clearly defined set of internal states and a defined method of

moving between them
• Most synthesis tools recognize any clocked process as an implicit state machine, that is, as

a state machine for which the state variable is implicit
• You can explicitly define a Verilog register or VHDL signal to be used as the state variable

for state machine

– FSMs designed for synthesis are usually represented as two processes/blocks, one
calculates the next state (combinational logic), and one assigns the next state to the
state vector register(s) on the clock edge (storage element)

HDL Coding Hints: Generic Coding Techniques & Considerations - ·²CIC Training Manual

FSM Optimization

X Most synthesis tools identify certain forms as representing state
 machines and provide mechanisms for controlling the encoding
 of the associated state variable

• For example, Synopsys FSM Extraction tool

HDL Coding Hints: Generic Coding Techniques & Considerations - ·³CIC Training Manual

Using Synopsys FSM Directives

X You must explicitly specify FSM blocks in your code if you want to
 use Synopsys FSM Extraction tool in the later design stage

• In Verilog, you must use Synopsys FSM directives to specify FSM blocks:
/* synopsys enum enum_name */ : specifies default state machine encoding
// synopsys state_vecto r vector_name : indicates the state vector variable (reg)

• In VHDL, you must use VHDL attributes to specify the default FSM encoding:
attribute ENUM_ENCODING: string;

attribute ENUM_ENCODING of state_type : type is " ... ";

And you must use VHDL attributes to specify the state vector signal:
attribute STATE_VECTOR : STRING;

attribute STATE_VECTOR of arch_name : ARCHITECTURE is " sig_name";

HDL Coding Hints: Generic Coding Techniques & Considerations - ·´CIC Training Manual

FSM Example - Verilog

parameter [4:0] /* synopsys enum day_type */
 sun = 5’b10000, mon = 5’b01000, tue = 5’b00100, wed = 5’b00010,
 thu = 5’b00001, fri = 5’b10001, sat = 5’b01110;
reg [4:0] /* synopsys enum day_type */ day, next_day;

// synopsys state_vector day

always @(posedge clk negedge clear)
begin : SYNC
 if (!clear) day = sun;
 else day = next_day;
end
always @(day)
begin : COMB
 bell_ring = 0;
 case (day) // synopsys full_case
 sun: next_day = mon;
 mon: next_day = tue;
 tue: next_day = wed;
 wed: next_day = thu;
 thu: next_day = fri;
 fri: next_day = sat;
 sat: begin
 next_day = sun; bell_ring = 1;
 end
 endcase
end

combinational logic

 update state vector

HDL Coding Hints: Generic Coding Techniques & Considerations - ·µCIC Training Manual

FSM Example - VHDL

architecture BEHAVIOR of FSM2 is
 type DAY_TYPE is (SUN, MON, TUE, WED, THU, FRI, SAT);
 attribute ENUM_ENCODING : string;
 attribute ENUM_ENCODING of DAY_TYPE : type is "10000 01000 00100 00010 00001 10001 01110";
 signal DAY, NEXT_DAY: DAY_TYPE;
 attribute STATE_VECTOR : STRING;
 attribute STATE_VECTOR of BEHAVIOR : ARCHITECTURE is "DAY";
begin
SYNC: process(CLK, CLEAR)
begin
 if (CLEAR = '0') then DAY <= SUN;
 elsif (CLK'EVENT and CLK = '1') then DAY <= NEXT_DAY;
 end if;
end process SYNC;
COMB: process (DAY)
begin
 BELL_RING <= '0';
 case DAY is
 when SUN => NEXT_DAY <= MON;
 when MON => NEXT_DAY <= TUE;
 when TUE => NEXT_DAY <= WED;
 when WED => NEXT_DAY <= THU;
 when THU => NEXT_DAY <= FRI;
 when FRI => NEXT_DAY <= SAT;
 when SAT => NEXT_DAY <= SUN; BELL_RING <= '1';
 end case;
end process COMB;

combinational logic

update state vector

HDL Coding Hints: Generic Coding Techniques & Considerations - ·¶CIC Training Manual

Designing Memories

X Do not behaviorally describe RAMS in your code because the
 synthesis tool will create combinational loops and a lot of registers

• None of synthesis tools can judge a RAM block or process
• Instead, you should instantiate a RAM module or primitive provided by the vendor

X FPGA vendors often provide the memory generator tool to create
 the following items for simulation and synthesis:

• Behavioral Verilog/VHDL simulation model files
– They can not be used as the input to the synthesis tool

• Example files to tell you how to instantiate the RAM/ROM module in your design file

• Timing model files for the synthesis tool
• The netlist files required by the FPGA implementation tools

HDL Coding Hints: Generic Coding Techniques & Considerations - ··CIC Training Manual

Synchronous & Asynchronous RAM

X Some FPGA devices provides synchronous and asynchronous
 RAM blocks

• Use synchronous RAM instead of asynchronous RAM if possible
– FPGA RAM block usually has a self-timed write pulse
– Address can be change after it is clocked into RAM

– Besides, you may register RAM outputs for pipelining

HDL Coding Hints: Generic Coding Techniques & Considerations - ·¸CIC Training Manual

Considerations for Synthesis

X The main consideration for synthesis: overall cost
• Time is money!
• Area is money!
• Quality is money!

HDL Coding Hints: Generic Coding Techniques & Considerations - ·¹CIC Training Manual

Considering the Design

X The main considerations in the design stage are:
• Level of abstraction in HDL modeling
• Levels of hierarchy
• Technology-dependent or independent

• Reliability
• Easy to maintain and debug your code
• Development time

• Simulation time
• Easy to upgrade
• Migration to ASIC

HDL Coding Hints: Generic Coding Techniques & Considerations - ·ºCIC Training Manual

Considering Synthesis Process

X The main considerations in the synthesis process are:
• Optimization constraints
• Hierarchy structure of your design
• CPU time

• Memory requirements

HDL Coding Hints: Generic Coding Techniques & Considerations - ¸±CIC Training Manual

Considering Synthesis Results

X The main considerations for the synthesis results are:
• Performance
• Critical timing paths
• Area

• FPGA resource utilization

HDL Coding Hints: Generic Coding Techniques & Considerations - ¸²CIC Training Manual

Instantiation vs. Inference

X Instantiation vs. inference
• Instantiation: explicitly select a technology-specific element in the target library
• Inference: direct the HDL Compiler to infer latches or flip-flops or other resource blocks from

your Verilog or VHDL description

X Technology-independent vs. technology-dependent
• Keeping the pre-synthesis design source code technology-independent allows you to re-

target to other technologies at a later time, with a minimum of re-design effort
• Technology-dependent design uses dedicated functions or design techniques optimized for

speed or area

– The designer may require detailed understanding on device architectures

HDL Coding Hints: Generic Coding Techniques & Considerations - ¸³CIC Training Manual

Synchronous vs. Asynchronous

X Synchronous designs run smoothly through synthesis, simulation,
 test and implementation

• Synchronous designs uses more registers, which are rich in FPGAs
• Watch for unintentional latch inference

– Remember completely specify all branches for every case or if statement

• If asynchronous logic blocks are required, put them into separate blocks

HDL Coding Hints: Generic Coding Techniques & Considerations - ¸´CIC Training Manual

Thinking Hardware

X The most straightforward coding of a design is not always the best
 choice for actual hardware implementation

• Think if you can reduce logic from the architecture view before starting coding
• Pre-schedule your RTL design if possible

module shift(a, shiftcnt, z);
input [31:0] a;
input [4:0] shiftcnt;
output [31:0] z;

assign z = a[31] ? ((a >> shiftcnt) |
 (((32’b1 << shiftcnt) -1)) << (32 - shiftcnt))
 : (a >> shiftcnt);
endmodule

module shift(a, shiftcnt, z);
input [31:0] a;
input [4:0] shiftcnt;
output [31:0] z;

assign z = {{31{a[31]}},a} >> shiftcnt;
endmodule

a[31:0]

(shiftcnt=5)
if a[31] == 0, result = {5{1’b0}, a[31], ...,a[5]}
if a[31] == 1, result = {5{1’b1}, a[31], ...,a[5]}

405 Altera LCs

190 Altera LCs

HDL Coding Hints: Generic Coding Techniques & Considerations - ¸µCIC Training Manual

Design Partitioning

X Design partitioning
• Manage your design hierarchy to reduce CPU time during synthesis, and also achieve

higher performance
– A very big design without hierarchy may require 24 hours or above of run time

– A design with many levels of hierarchy may reduce efficiency during synthesis process

HDL Coding Hints: Generic Coding Techniques & Considerations - ¸¶CIC Training Manual

Considering Design Partitioning

X Strategies for design partitioning
• Partition each design block to target < 5,000 gates size
• Do not partition a basic logic element, for example, a flip-flop or one-bit adder, into a basic

block in a large design

– The number of the hierarchy levels will be too large and the compile time will increase
very much

• Separate datapath with control logic

• Separate structured circuit with random logic
– Structured circuit: adder, multiplier, comparator, MUXs, ALU, ...
– Unstructured circuit: random control logic, PLA, ...

• Merge blocks that can share resources
• Isolate state machines
• Keep related combinational logic together in a single block

• Keep critical paths in a single block and remove circuit that is not speed critical from the
critical path block

HDL Coding Hints: Generic Coding Techniques & Considerations - ¸·CIC Training Manual

Registered Outputs

X Registered outputs
• Register the outputs of lower-level files in the design hierarchy whenever possible

– This process generates code that is easier to maintain and it can be more successfully
synthesized

• Registered outputs also make it easier to provide accurate timing constraints
• Use a single clock for each design clock
• Separate combinational and sequential assignments

HDL Coding Hints: Generic Coding Techniques & Considerations - ¸¸CIC Training Manual

Resource Sharing

X Resource sharing
• Operations can be shared if they lie in the same block
• May improve resource utilization & design performance

X Strategies
• Keep resources that might be shared between different functions or that might require a

similar configuration in the same block of the design hierarchy

• Group similar designs into the same hierarchy to allow Synopsys to share resources when
practical

always @(a or b or c or sel)
 if (sel) z = a + b;
 else z = a + c;

+

M
U
X

b

c

sel

a

z

HDL Coding Hints: Generic Coding Techniques & Considerations - ¸¹CIC Training Manual

Pipelining & Pipeline Re-Timing

X Pipelining & pipeline re-timing
• To pipeline high-speed sequential designs whenever possible
• FPGA devices are register-rich

– FPGA devices provide a high ratio of flip-flops to combinational logic

– The architecture makes pipelining & pipeline re-timing especially advantageous
techniques for FPGAs

– There is often little or no area penalty associated with using extra registers

• You can make a pipelined design to achieve higher performance & higher device utilization
simultaneously in the FPGA architecture

HDL Coding Hints: Generic Coding Techniques & Considerations - ¸ºCIC Training Manual

Designing FSMs

X FSM (Finite State Machine) encoding is the key issue
• The number of available registers affects the design of FSMs

– Binary encoding of FSMs is designed to minimize the usage of flip-flops
– Gray encoding is designed to avoid glitches

– “One-hot” encoding is typically the fastest state machine implementation available in
FPGA architecture

• All state flip-flops must be driven by the same clock

• In cases where “fail-safe” behavior is required, specify default clause in every case
statement

– Synopsys will generate the required logic to reset the state machine to a known state
when it goes to an unknown state

X Using Synopsys FSM extraction & optimization tool
• Follow Synopsys FSM coding style so that you can use Synopsys FSM extraction &

optimization tool to get the best FSM implementation

HDL Coding Hints: Generic Coding Techniques & Considerations - ¹±CIC Training Manual

State Machine Partitioning

X State machine partitioning
• A complex state machine can be partitioned into smaller state machines

– For example, you may be able to reduce a 100-state state machine into 3 state
machines of 6 states each

– With good designs, there can be a positive effect on both performance & area
– Each sub-machine needs an IDLE state during which the control is passed to another

sub-machine

• Partition your design into control logic & datapath elements and use a state machine for the
control blocks

HDL Coding Hints: Altera-Specific Issues - ²CIC Training Manual

Altera-Specific Issues
X Using Flip-Flops Instead of Latches
X Designing Tri-State Buses
X Altera Primitives
X Altera Macrofunctions
X Altera DesignWare Modules
X FLEX 10K RAMs & ROMs

Please refer to “Altera & Synopsys” training manual
to know how to simulate a Altera-specific designs.

HDL Coding Hints: Altera-Specific Issues - ³CIC Training Manual

Using Flip-Flops Instead of Latches

X Level-sensitive latch vs. edge-sensitive flip-flop
• Altera recommends using flip-flops rather than latches

– Latches are built by combining the combinational logic in the LE with feedback, and
will result in combination loops and hold-time requirements

• Be careful when using HDL case or if statements
– Specify all the branches in a if or case statement if possible

HDL Coding Hints: Altera-Specific Issues - ´CIC Training Manual

Designing Tri-State Buses

X Tri-state emulation in Altera devices
• You can infer tri-state buffers in HDL modeling and synthesis
• However, Altera devices do not have real internal tri-state buffers
• Altera software will emulate tri-state buses by using multiplexers and by routing the

bidirectional line outside of the device and then back in through another pin
– When tri-state buses are used to multiplex signals, Altera MAX+PLUS II Compiler will

convert the logic to a combinatorial multiplexer

– When tri-state buses are used for bidirectional communication, you can rout this
bidirectional line outside of the device, which uses the tri-states present at the I/O pins,
or you can convert the tri-state bus into a multiplexer

HDL Coding Hints: Altera-Specific Issues - µCIC Training Manual

Altera-Provided Primitives

X Altera provides many primitives you can instantiate in your HDL
 design files

• Buffer primitives:
– AGLOBAL, ALCELL, ASOFT, ATRIBUF, ACARRY, ACASCADE, EXP, OPNDRN, ...

• Latch & flip-flop primitives:
– LATCH, DFF, DFFS, DFFE, DFFC, DFFP, TFF, TFFS, TFFC, TFFE, ...

• Logic primitives:
– ATBL_x, INV , ANDx, NANDx, ORx, NORx, XOR2, XNOR2, ...

X In most circumstances, you do not need to instantiate Altera
 primitives

• Latch, flip-flop and logic primitives are automatically inferred by the synthesis tools
• Only some buffer primitives may be used to control the logic synthesis process

HDL Coding Hints: Altera-Specific Issues - ¶CIC Training Manual

Special Buffer Primitives - (1)

X AGLOBAL (GLOBAL)

• To indicate that a signal must use a global clock, clear, preset or output enable signal,
instead of signals generated with internal logic or driven by ordinary I/O pins

• A inverter gate may be inserted between the input pin and GLOBAL

X ALCELL (LCELL)

• To allocate a logic cell for the project (an LCELL buffer always consumes one logic cell)

– It’s not removed from a project during Altera implementation
• It can be used to create an intentional delay or asynchronous pulse

– However, race conditions can occur and create an unreliable circuit because the delay
of these elements varies with temperature, power supply voltage and device
fabrication process

X ASOFT (SOFT)

• To specify that a logic cell may be needed in the project
• During implementation, MAX+PLUS II Compiler examines the logic feeding the primitive and

determines whether a logic cell is needed

HDL Coding Hints: Altera-Specific Issues - ·CIC Training Manual

Special Buffer Primitives - (2)

X ATRIBUF (ATRI, TRI)

• A active-high tri-state buffer

X OPNDRN

• An open-drain buffer, equivalent to a TRI primitive whose output enable input is fed by an
signal, but whose primary input is fed by a GND primitive

• Only supported for the FLEX 10K and MAX 7000S device families

HDL Coding Hints: Altera-Specific Issues - ¸CIC Training Manual

Buffer Primitives Instantiation

X Note when instantiating Altera buffer primitives
• Component names without an “A” prefixed (such as GLOBAL, LCELL, SOFT, TRI)

– The input, output and output enable port names are A_IN and A_OUT and OE

– They are set to “don’t touch” and Synopsys will not optimize them

– Only compliant with VHDL VITAL 2.2b
– Not suggested to use for FLEX designs

• Component names with an “A” prefixed (such as AGLOBAL, ALCELL, ASOFT, ATRIBUF)

– The input, output and output enable port names become IN1 , Y, and OE

– ALCELL are not set to “don’t touch”
– Compliant with VHDL VITAL 3.0

HDL Coding Hints: Altera-Specific Issues - ¹CIC Training Manual

Simulation Models of Primitives

X Simulation models have been included in the software
• Verilog simulation model for Altera’s primitives:

 /usr/maxplus2/synopsys/library/alt_pre/verilog/src/ altera.v

• VHDL source files: flex.vhd and flex.cmp under the directory
 /usr/maxplus2/synopsys/library/alt_pre/vital/src

• Synopsys VSS library directory:
 /usr/maxplus2/synopsys/library/alt_pre/vital/lib/flex_vtl/

(Library name: flex_vtl ; Package name: vcomponents)

HDL Coding Hints: Altera-Specific Issues - ºCIC Training Manual

Using Altera Primitives - Verilog
// Ex1. a parity tree
wire [7:1] parityout;
wire [7:1] parity;
wire ww0;
integer i;

AGLOBAL U0(. Y(ww0), . IN1 (word[0]));
assign parity[1] = ww0 ^ word[1];
ASOFT U1(. Y(parityout[1]), . IN1 (parity[1]));
assign parity[2] = parityout[1] ^ word[2];
ASOFT U2(. Y(parityout[2]), . IN1 (parity[2]));
assign parity[3] = parityout[2] ^ word[3];
ASOFT U3(. Y(parityout[3]), . IN1 (parity[3]));
assign parity[4] = parityout[3] ^ word[4];
ASOFT U4(. Y(parityout[4]), . IN1 (parity[4]));
assign parity[5] = parityout[4] ^ word[5];
ASOFT U5(. Y(parityout[5]), . IN1 (parity[5]));
assign parity [6] = parityout[5] ^ word[6];
ASOFT U6(.Y(parityout[6]), . IN1 (parity[6]));
assign parity[7] = parityout[6] ^ word[7];
ASOFT U7(. Y(parityout[7]), . IN1 (parity[7]));

assign is_odd = parityout[7];

HDL Coding Hints: Altera-Specific Issues - ²±CIC Training Manual

Using Altera Primitives - VHDL
-- Ex1. a parity tree
architecture BEHAVIOR of GENERATE3 is
 component ASOFT -- Must include FLEX_VTL library
 port (Y: out STD_LOGIC; -- and FLEX_VTL.VCOMPONENTS package
 IN1: in STD_LOGIC); -- for simulation purpose
 end component;
 component AGLOBAL
 port (Y: out STD_LOGIC;
 IN1: in STD_LOGIC);
 end component;
 signal PARITY, PARITYOUT: STD_LOGIC_VECTOR(7 downto 0);
 signal AA0: STD_LOGIC;
begin
 U0: AGLOBAL port map(Y => AA0, IN1 => A(0)); -- Named Association
 FOR_1: for I in 1 to 7 generate
 G1: if (I = 1) generate
 PARITY(I) <= AA0 xor A(I);
 U1: ASOFT port map(PARITYOUT(I), PARITY(I)); -- Positional Association
 end generate;
 G2: if (I > 1) generate
 PARITY(I) <= PARITYOUT(I-1) xor A(I);
 UGEN: ASOFT port map(PARITYOUT(I), PARITY(I)); -- Positional Association
 end generate;
 end generate;
 PARITY_OUT <= PARITYOUT(7);
end BEHAVIOR;

HDL Coding Hints: Altera-Specific Issues - ²²CIC Training Manual

Altera Macrofunctions

X Altera supplies 4 macrofunctions which are compact & run at high
 speed

• A_81MUX : multiplexer (Altera’s 81mux macrofunction)
• A_8COUNT : up/down counter (Altera’s 8count macrofunction)
• A_8FADD : full adder (Altera’s 8fadd or 8faddb macrofunction)
• A_8MCOMP : magnitude comparator (Altera’s 8mcomp or 8mcompb macrofunction)

– Refer to Altera on-line help or their simulation models for detailed function descriptions

HDL Coding Hints: Altera-Specific Issues - ²³CIC Training Manual

Simulation Models of Macrofunctions

X Simulation models have been included in the software
• Verilog simulation model for Altera’s macrofunctions:

 /usr/maxplus2/synopsys/library/alt_mf/src/ mf.v

• VHDL source files: mf.vhd and mf_components.vhd under the directory
 /usr/maxplus2/synopsys/library/alt_mf/src/

• Synopsys VSS library directory:
 /usr/maxplus2/synopsys/library/alt_mf/lib

(Library name: altera ; Package name: maxplus2)

HDL Coding Hints: Altera-Specific Issues - ²´CIC Training Manual

Using Altera Macrofunctions - Verilog
/* The port declarations of Altera Macrofunction
module A_81MUX (A, B, C, D0, D1, D2, D3, D4, D5, D6, D7, GN, Y, WN);
module A_8COUNT (A, B, C, D, E, F, G, H, LDN, GN, DNUP, SETN, CLRN, CLK,
 QA, QB, QC, QD, QE, QF, QG, QH, COUT);
module A_8FADD (A8, A7, A6, A5, A4, A3, A2, A1, B8, B7, B6, B5, B4, B3, B2, B1, CIN,
 SUM8, SUM7, SUM6, SUM5, SUM4, SUM3, SUM2, SUM1, COUT);
module A_8MCOMP (A7, A6, A5, A4, A3, A2, A1, A0, B7, B6, B5, B4, B3, B2, B1, B0,
 ALTB, AEQB, AGTB, AEB7, AEB6, AEB5, AEB4, AEB3, AEB2, AEB1, AEB0);
*/

// An example to instantiate A_8COUNT function
input clear, clk;
output [7:0] out;
supply1 VDD;

A_8COUNT U1 (. A(), . B(), . C(), . D(), . E(), . F(), . G(), . H(),
 . LDN(VDD), . GN(), . DNUP(), . SETN(VDD), . CLRN(clear), .CLK (clk),
 . QA(out[0]), . QB(out[1]), . QC(out[2]), . QD(out[3]), . QE(out[4]),
 . QF(out[5]), . QG(out[6]), . QH(out[7]), . COUT());

HDL Coding Hints: Altera-Specific Issues - ²µCIC Training Manual

Using Altera Macrofunctions - VHDL
library IEEE;
use IEEE.STD_LOGIC.1164;
library ALTERA;
use ALTERA.MAXPLUS2.all;

-- An example using Altera-supplied macrofunction to create a complex 8-bit counter
-- (active-low clear, async and sync load & enable)

entity COUNTER3 is
 port (COUNT_OUT: out STD_LOGIC_VECTOR(7 downto 0);
 COUNT_IN: in STD_LOGIC_VECTOR(7 downto 0);
 CLK, UPDOWN, ENABLE, LOAD, CLEAR, SET: in STD_LOGIC);
end COUNTER3;

architecture STRUCTURE of COUNTER3 is
 signal LDN, GN, DNUP: STD_LOGIC;
begin
 LDN <= not LOAD; GN <= not ENABLE; DNUP <= not UPDOWN;
 U1: A_8COUNT port map
 (A => COUNT_IN(0), B => COUNT_IN(1), C => COUNT_IN(2), D => COUNT_IN(3),
 E => COUNT_IN(4), F => COUNT_IN(5), G => COUNT_IN(6), H => COUNT_IN(7),
 LDN => LDN, GN => GN, DNUP => DNUP, SETN => SET, CLRN => CLEAR, CLK => CLK,
 QA => COUNT_OUT(0), QB => COUNT_OUT(1), QC => COUNT_OUT(2), QD => COUNT_OUT(3),
 QE => COUNT_OUT(4), QF => COUNT_OUT(5), QG => COUNT_OUT(6), QH =>COUNT_OUT(7));

end STRUCTURE;

HDL Coding Hints: Altera-Specific Issues - ²¶CIC Training Manual

Altera DesignWare Modules

X Altera provides DesignWare interface to Synopsys for all FLEX
 device families

• Altera provides optimized support for the following HDL operators:
+, -, >, <, >=, <=, +1, -1

– Automatic access to FLEX carry & cascade chain functions

– Optimal routing of FLEX designs
– Improved area & performance prediction capability in Synopsys tools

X Therefore, if you need adders, subtractors, and comparators, just
 use the above HDL operators instead of creating functions of gates

HDL Coding Hints: Altera-Specific Issues - ²·CIC Training Manual

FLEX 10K RAMs & ROMs

X FLEX 10K devices support EABs that can be used as memory
• EAB: 2Kb of RAM block

– Can be configured as 2048x1, 1024x2, 512x4, or 256x8 RAM or ROM (without WE)
– Input and output ports can be registered

X Do not behaviorally describe your RAM functions
• Synthesis tools can’t make difference between RAM and large register files

X Do not behaviorally describe your ROM functions either
• Synopsys will translate your ROM descriptions into a large combinational circuit

HDL Coding Hints: Altera-Specific Issues - ²¸CIC Training Manual

GENMEM Utility

X You can use Altera-provided GENMEM utility to create RAM/ROM
 models that you can instantiate in your HDL design files

• GENMEM creates:
– Functional simulation model
– Library timing model

– Component declaration (for VHDL users)
• GENMEM supports the following RAM/ROM configurations:

– Asynchronous RAM/ROM

– Synchronous RAM/ROM
– Cycle-shared FIFO
– Cycle-shared dual-port RAM

HDL Coding Hints: Altera-Specific Issues - ²¹CIC Training Manual

GENMEM Usage

Usage: genmem memory_type memory_size [-vhdl] [-verilog] [-viewlogic] [-o]

 memory_type Specifies a valid memory type.
 memory_type can be one of these values:

 ASYNRAM Asynchronous RAM
 ASYNROM Asynchronous ROM
 SYNRAM Synchronous RAM
 SYNROM Synchronous ROM
 CSFIFO Cycle-Shared FIFO
 CSDPRAM Cycle-Shared Dual-Port RAM

 memory_size Specifies the size of the memory model. memory_size consists of two values:

 word Must be between 2 and 32768 (32k).
 width Must be between 1 and 32.

 The word and width values must be separated by an " x". (<word> x<width>)

 -vhdl Generate vhdl output(default)
 -verilog Generate verilog output
 -viewlogic Generate VHDL model for Viewlogic
 -o Overwrite the output file

Example: genmem asynrom 256x15
 This example generates asyn_rom_256x15.vhd, asyn_rom_256x15.cmp, and asyn_rom_256x15.lib

HDL Coding Hints: Altera-Specific Issues - ²ºCIC Training Manual

GENMEM Example - Verilog
unix> genmem synram 256x16 -verilog
GenMem -- Generate Memory Simulation Model Version 2.3

Copyright (C) 1996 Altera Corporation

 | Sync. | Sync. | Sync.

 RAM | Address | Input | Output

 Type | Control | Data | Data

 1 | Yes | Yes | Yes

 2 | Yes | Yes | No

 3 | Yes | No | Yes

 4 | Yes | No | No

 5 | No | Yes | No

 6 | No | Yes | Yes

 7 | No | No | Yes

 Select a RAM type number (1 ~ 7) or 8 to quit

2

unix> ls syn_ram_256x16*
syn_ram_256x16_irou.lib syn_ram_256x16_irou.v

.lib : library timing model for synthesis

.v : Verilog functional simulation model

HDL Coding Hints: Altera-Specific Issues - ³±CIC Training Manual

Verilog File Created by GENMEM
unix> more syn_ram_256x16_irou.v

module syn_ram_256x16_irou (Q, Data, WE, Address, Inclock);

parameter LPM_FILE = "UNUSED";

parameter Width = 16;

parameter WidthAd = 8;

parameter NumWords = 256;

input [WidthAd-1:0] Address;

input [Width-1:0] Data;

input WE;

output [Width-1:0] Q;

input Inclock;

:

:

 if (LPM_FILE != "UNUSED")

 begin

 $convert_hex2ver (LPM_FILE, Width, mem_initf);

 $readmemh(mem_initf, mem_data);

 end

LPM_FILE parameter specifies RAM/ROM initialization file.
 - It’s optional for a RAM module
 - It must be set to a Intel-Hex file (*.hex) that defines memory content
 - The memory file must reside in the current working directory

Note:
Verilog-XL does not support this system task by default. Please use another
Verilog executable that can be get from CIC FTP site to do functional simulation.
 CIC FTP site: ftp.cic.edu.tw (140.126.24.62)
 File: /pub/cad/tools/Altera_unix/verilog/bin/sunos/alt_verilog (for SunOS 4.1.x)
 File: /pub/cad/tools/Altera_unix/verilog/bin/solaris/alt_verilog (for Solaris 2.5)

port list

HDL Coding Hints: Altera-Specific Issues - ³²CIC Training Manual

Instantiating RAM/ROM in Verilog
unix> more use_ram1.v
// An example to use syn_ram_256x16_irou module

module use_ram1(Q, ram_din, ram_wen, Address, clk, Count_En, Reset);

parameter LPM_FILE = "ramblk1.hex";

parameter Width = 16;

parameter WidthAd = 8;

parameter NumWords = 256;

input [WidthAd-1:0] Address;

input [Width-1:0] ram_din, Q;

input ram_wen, clk, Reset, Count_En;

reg [WidthAd-1:0] ram_addr;

:

:

syn_ram_256x16_irou

 // synopsys translate_off

 #(LPM_FILE)

 // synopsys translate_on

 ramblk1 (.Q(Q), .Data(ram_din), .WE(ram_wen), .Address(ram_addr), .Inclock(clk));

:

endmodule

Specify LPM_FILE parameter if necessary
Note:
The filename must be the same as the the instance name

Use Synopsys directives to skip checking and translation for
LPM_FILE parameter when instantiate RAM/ROM block

HDL Coding Hints: Altera-Specific Issues - ³³CIC Training Manual

GENMEM Example - VHDL
unix> genmem synram 256x16 -vhdl
GenMem -- Generate Memory Simulation Model Version 2.3

Copyright (C) 1996 Altera Corporation

 | Sync. | Sync. | Sync.

 RAM | Address | Input | Output

 Type | Control | Data | Data

 1 | Yes | Yes | Yes

 2 | Yes | Yes | No

 3 | Yes | No | Yes

 4 | Yes | No | No

 5 | No | Yes | No

 6 | No | Yes | Yes

 7 | No | No | Yes

 Select a RAM type number (1 ~ 7) or 8 to quit

2

unix> ls syn_ram_256x16*
syn_ram_256x16_irou.cmp syn_ram_256x16_irou.lib syn_ram_256x16_irou.vhd

.lib : library timing model for synthesis

.vhd : VHDL functional simulation model

.cmp : VHDL component declaration

HDL Coding Hints: Altera-Specific Issues - ³´CIC Training Manual

VHDL File Created by GENMEM
unix> more syn_ram_256x16_irou.vhd

entity syn_ram_256x16_irou is

 --pragma translate_off

 generic (LPM_FILE : string := "UNUSED");

 --pragma translate_on

 port (Data : in std_logic_vector(15 downto 0);

 Address : in std_logic_vector(7 downto 0);

 WE : in std_logic;

 Q : out std_logic_vector(15 downto 0);

 Inclock : in std_logic

);

:

:

end syn_ram_256x16_irou;

:

:

Synopsys directives are used to skip checking and translation for
LPM_FILE parameter when instantiate a RAM/ROM block

HDL Coding Hints: Altera-Specific Issues - ³µCIC Training Manual

Instantiating RAM/ROM in VHDL
unix> more use_ram1.vhd
architecture STRUCTURE of USE_RAM1 is

 component syn_ram_256x16_irou

 --pragma translate_off

 generic (LPM_FILE : string) ;

 --pragma translate_on

 port (Data : in std_logic_vector(15 downto 0);

 Address : in std_logic_vector(7 downto 0);

 WE : in std_logic;

 Q : out std_logic_vector(15 downto 0);

 Inclock : in std_logic);

 end component;

begin

 ramblk1: syn_ram_256x16_irou

 --pragma translate_off

 generic map (LPM_FILE => "ramblk1.hex")

 --pragma translate_on

 port map (Data => DIN, Address => Addr, WE => WEN, Q => Q, Inclock => CLK);

end STRUCTURE;

Specify LPM_FILE parameter if necessary
Note:
The filename must be the same as the the instance name

Use Synopsys directives to skip checking and
translation for LPM_FILE parameter when
instantiate a RAM/ROM block

HDL Coding Hints: Xilinx-Specific Issues - ²CIC Training Manual

Xilinx-Specific Issues
X Using Flip-Flops or Latches
X Designing Tri-State Buses
X Xilinx Primitives
X Xilinx DesignWare Modules

Please refer to “Xilinx & Synopsys” training manual
to know how to simulate a Xilinx-specific designs.

HDL Coding Hints: Xilinx-Specific Issues - ³CIC Training Manual

Using Flip-Flops or Latches

X Level-sensitive latch vs. edge-sensitive flip-flop
• In XC4000/E devices, only IOBs contain input latch

– A latch can be built by combining the combinational logic in the CLB with feedback,
and will result in combination loops and hold-time requirements

– You may implement a simple latch (without reset/set or enable) by instantiating a
RAM16x1 primitive in which all address input pins are connected to ground

• In XC5200 and XC4000X Series devices, the storage elements in CLBs can be configured
as flip-flops or latches individually

• Be careful when using HDL case or if statements
– Specify all the branches in a if or case statement if possible

HDL Coding Hints: Xilinx-Specific Issues - ´CIC Training Manual

Designing Tri-State Buses

X Internal tri-state buffers in Xilinx devices
• Xilinx FPGA devices have many internal tri-state buffers (BUFT)

– You can infer tri-state buffers in HDL modeling and synthesis
• Multiplexer that are larger than 4-to-1 exceed the capacity of one CLB

– You can build multiplexers that have one-hot encoded selector inputs by using internal
tri-state buffers

HDL Coding Hints: Xilinx-Specific Issues - µCIC Training Manual

Xilinx Primitives

X Xilinx provides many primitives you can instantiate in your HDL
 design files

• Please refer to “Synopsys (XSI) Interface/Tutorial Guide” Appendix for detailed function
descriptions of Xilinx primitives

• Note when instantiating Xilinx primitives:
– Xilinx has I/O primitives that can be infered or instantiated by Synopsys

– Instantiating Xilinx primitives may not allow you to migrate between FPGA families
– Not all primitives have simulation models

X In most circumstances, you do not need to instantiate Xilinx
 primitives expect for the following cases:

• Instantiate a registered-bidirectional I/O
• Instantiate the STARTUP symbol to utilize the GSR/GR net

• Use on-chip clock generator & clock buffers (OSC4, OSC5, BUFG, ...)
• Use readback and/or boundary-scan primitives
• Use other special functions of specific FPGA device architecture

HDL Coding Hints: Xilinx-Specific Issues - ¶CIC Training Manual

Registered Bidirectional I/Os

X Synopsys can handle various I/O configuration
• Synopsys can handle uni-directional I/O (registered or non-registered) and non-registered

bidirectional ports well
– For a non-registered bidirectional port, its 3-state signal that drives the output buffer

must be described in the same hierarchy level as the input signal
• However, Synopsys cannot automatically infer the 3-state registered output buffer cells

(OFDT, OFDT_F, ...) in a bidirectional I/Os

– These cells and the IBUF must be instantiated into the top-level design
• Note: you must place a “dont_touch” attribute on all instantiated I/O buffers before the

design is compiled by Synopsys

HDL Coding Hints: Xilinx-Specific Issues - ·CIC Training Manual

Dedicated GSR & GTS Nets

X XC4000 devices provides special GSR & GTS nets
• All XC4000 device families have a dedicated Global Set/Reset (GSR) net that initialize all

CLBs and IOBs
– This function of GSR net is separate from the individual preset and clear pin

– When GSR is asserted, every flip-flop in the FPGA is simultaneously preset or cleared
• Besides, a dedicated Global Tri-state (GTS) net is supported to force all of the IOB outputs

to high-impedance mode

• You do not need to use general purpose routing resources to connect to the preset or clear
pins of the flip-flops, or to force all of the IOB outputs to high-impedance mode

– Use the GSR and GTS nets to increase performance and reduce routing congestion
• You can access the GSR or GTS nets from the GSR or GTS pin on the STARTUP primitive

X XC5200 devices also provides special GR & GTS nets
• Similar to XC4000 GSR/GTS nets, XC5200 devices provide a Global Reset (GR) and GTS

nets on the STARTUP primitive

HDL Coding Hints: Xilinx-Specific Issues - ¸CIC Training Manual

Clock Generators

X XC4000 & XC5200 devices provides on-chip clock generators
• XC4000 devices provide internal clock generators (OSC4) to provide internal clock signals in

applications where timing is not critical
– Frequency: 8M, 500K, 16K, 490, 15Hz

• XC5200 devices also provide internal clock generators (OSC5)
– “DIVIDE1_by ” or “DIVIDE2_by ” attributes are required to set

HDL Coding Hints: Xilinx-Specific Issues - ¹CIC Training Manual

Global Buffers

XYou can manually connect internal clock signal to a global buffer
 provided by XC4000 & XC5200 devices to reduce clock skew

• Each XC4000E device contains 8 global buffers
– 8 BUFG_F (= 4 BUFGP_F + 4 BUFGS/BUFGS_F)

• Each XC4000X device contains more fast buffers

– 8 BUFGLS/BUFGE, 4 BUFFCLK

– BUFG_F, BUFFGS, BUFG_F primitives still can be used
• Each XC5200 device contains 4 global buffers

– 4 BUFG/BUFG_F

HDL Coding Hints: Xilinx-Specific Issues - ºCIC Training Manual

Boundary Scan

X XC4000 and XC5200 devices contain boundary-scan facilities
• XC4000/E and XC5200 devices contain boundary-scan facilities that are compatible with

IEEE Standard 1149.1
• You can instantiate the boundary-scan symbol, BSCAN, and the boundary scan I/O pads,

TDI , TMS, TCK and TDO to access the boundary scan logic after configuration
– Activation of the boundary-scan logic is part of the design process

• Do not use Synopsys tools to insert boundary-scan logic because they do not work with
FPGA devices

HDL Coding Hints: Xilinx-Specific Issues - ²±CIC Training Manual

Using Dedicated I/O Decoders

X XC4000 devices provide dedicated I/O decoders (edge decoders)
• The periphery of the XC4000 devices has 4 wide decoder circuits at each edge (2 in

XC4000A devices)
• The inputs to each decoder are any of the IOB signals on that edge (using DECODE1_IO)

plus one local interconnect per CLB row or column (using DECODE1_INT)
– Each decoder generates a high output (using a pull-up resistor, PULLUP) when the

AND condition of the selected inputs or their complements is true

• Edge decoder and pull-up resister primitives include
– DECODE1_IO

– DECODE1_INT

– DECODE4, DECODE8, DECODE16

– PULLUP

HDL Coding Hints: Xilinx-Specific Issues - ²²CIC Training Manual

Memory Primitives

X XC4000 device families can efficiently implement RAM & ROM
 using CLB functional generators

• You can instantiate 16x1 and 32x1 RAM and ROM primitives
– Asynchronous RAM: RAM16X1, RAM32X1

– Synchronous RAM: RAM16X1S, RAM32X1S

– Dual port RAM: RAM16X1D

– ROM: ROM16X1, ROM32X1 (must add ROM value)
• You can use LogiBLOX utility to create RAM and ROM netlist instead of using primitives

– Easier, faster, and more flexible
– Refer to “Xilinx & Synopsys” training manual for details

HDL Coding Hints: Xilinx-Specific Issues - ²³CIC Training Manual

Simulation Models of Primitives

X Simulation models have been included in the software
• Verilog simulation model for Xilinx’s primitives:

XC4000E: /usr/xilinx/cadence/data/verilogxce4000e/ *.v
XC4000X: /usr/xilinx/cadence/data/verilogxce4000ex/ *.v
XC5200: /usr/xilinx/cadence/data/verilogxce5200/ *.v
XC3000: /usr/xilinx/cadence/data/verilogxce3000/ *.v

• VHDL source files: <family>_FTGS.vhd and <family>_components.vhd under the
directory
 /usr/xilinx/synopsys/libraries/sim/src/ <family>/ftgs

– <family> includes: xc3000a, xc4000e, xc5200
• Synopsys VSS library directory:

 /usr/xilinx/synopsys/libraries/sim/lib/ <family>/ftgs
(Library name: <family> ; Package name: components)
– <family> includes: xc3000a, xc4000e, xc5200

HDL Coding Hints: Xilinx-Specific Issues - ²´CIC Training Manual

Using Xilinx Primitives - Verilog
// Instantiating a registered bidirectional I/O on XC4000/E IOB
// OFDT_F: 3-state registered output buffers with a fast slew rate
// IBUF : input buffer
OFDT_F U0 (. D(outa), . C(clock), . T(loada), . O(siga));
IBUF UI0 (. I (siga), . O(ina));

// Instantiating STARTUP symbol
STARTUP U1 (. GSR(gsr_in));

// Instantiate OSC4 on-chip clock generator - 15Hz and a global buffer for the clock
OSC4 U2 (. F15(f15_out));
BUFGS U3 (. I (f15_out), . O(clk_f15));

// Instantiate BSCAN symbol
BSCAN U4 (. TDI (tdi_sig), . TMS(tms_sig), . TCK(tck_clk), . TDO(tdo_sig));
TDI U5 (. I (tdi_sig));
TMS U6 (. I (tms_sig));
TCK U7 (. I (tck_sig));
TDO U8 (. O(tco_sig));

// Instantiate XC4000/E edge decoders
ADR_INV = ~ADR;
DECODE4 A1 (. A3(adr[3]) , . A2(adr[2]), . A1(adr[1]), . A0(adr_inv[0]), . O(dec_out[0]));
DECODE1_IO A2 (. I (adr_inv[4], . O(dec_out[0]));
PULLUP A3 (. O(dec_out[0]));

HDL Coding Hints: Xilinx-Specific Issues - ²µCIC Training Manual

Using Xilinx Primitives - VHDL
library XC4000E;
use XC4000E.COMPONENTS.all;
...
-- Instantiating a registered bidirectional I/O on XC4000/E IOB
-- OFDT_F: 3-state registered output buffers with a fast slew rate; IBUF: input buffer
U0 : OFDT_F port map (D => OUTA, . C => CLOCK, T => LOADA, O => SIGA);
UI0 : IBUF port map (I => SIGA, . O => INA);

-- Instantiating STARTUP symbol
U1: STARTUP port map (GSR => gsr_in);

-- Instantiate OSC4 on-chip clock generator - 15Hz and a global buffer
U2: OSC4 port map (F15 => f15_out);
U3: BUFGS port map (I => f15_out, O => clk_f15);

-- Instantiate BSCAN symbol
U4: BSCAN port map (TDI => TDI_SIG, TMS => TMS_SIG, TCK => TCK_CLK, TDO => TDO_SIG);
U5: TDI port map (I => TDI_SIG);
U6: TMS port map (I => TMS_SIG);
U7: TCK port map (I => TCK_SIG);
U8: TDO port map (O => TDO_SIG);

-- Instantiate XC4000/E edge decoders
ADR_INV <= not ADR(4 downto 0);
A1: DECODE4 port map
 (A3 => ADR(3), A2 => ADR(2), A1 => ADR(1), A0 => ADR_INV(0), O => DEC_OUT(0));
A2: DECODE1_IO port map (I => ADR_INV(4), O => DEC_OUT(0));
A3: PULLUP port map (O => DEC_OUT(0));

HDL Coding Hints: Xilinx-Specific Issues - ²¶CIC Training Manual

Xilinx DesignWare Modules

X Xilinx provides DesignWare interface to Synopsys for all XC4000 &
 XC5200 device families (XDW library)

• Xilinx provides optimized support for the following HDL operators:
+, -, >, <, >=, <=, +1, -1

– Automatically utilize carry logic to improve both the area & speed

– Optimal implementation for specific device family
– The XDW library contains area and speed information for its modules
– X-BLOX modules are synthesized in the design implementation stage

X Therefore, if you need adders, subtractors, and comparators, just
 use the above HDL operators instead of creating functions of gates

HDL Coding Hints: Xilinx-Specific Issues - ²·CIC Training Manual

XDW Module Implementation

X XC4000 devices accommodate 2 bits fo arithmetic function per
 CLB, and XC4200 devices accommodate 4 bits per CLB

• In XC4000 devices, arithmetic functions are implemented in one vertical column of CLBs
– The carry propagation direction is upward in XC4000X devices, and up or down in

XC4000E devices
• In XC5200 devices, arithmetic functions are implemented in two vertical columns of CLBs

– The carry propagation direction is upward

X In general, choose a target device that can accommodate the
 “tallest” arithmetic structure in your design

• For example, if you want fastest implementation of a 33-bit two’s complement adder, you
should select XC4008E or larger part type

– XC4006E device contains 16 CLBs per column that can only implement 32-bit
unsigned adders a column. Using a XC4008E (18 CLBs per column) or larger device
would give you the fastest implementation since the adder would not have to wrap into
the next column

Summary & Getting Help - ²CIC Training Manual

Summary
X Why programmable logic?

• In-circuit verification
• Shorter time-to-market
• Reduced risk

• ...

X Why HDL?
• Descriptive
• IEEE standardized & portable
• Success of synthesis tools

• ...

X What to consider?
• Cost: unit cost, development time, resource utilization, performance, ...
• HDL coding style: synthesis subset, technology independent or dependent, efficiency for

synthesis, hierarchy, FPGA family-specific issues, ...

Summary & Getting Help - ³CIC Training Manual

What’s Next?

X Now, you’ve prepared a HDL design file
• Go to functionally simulate it
• Use FPGA Compiler to synthesis it
• Use FPGA vendor tools to P&R the design

• Program the device on system

X Now, you can continue the learning process from the following
 training course:

• Xilinx-Synopsys Design Flow Training Course
– For Xilinx users, learn FPGA Compiler and Xilinx tools

• Altera-Synopsys Design Flow Training Course

– For Altera users, learn FPGA Compiler and Altera tools

Summary & Getting Help - ´CIC Training Manual

Recommended Reference Manuals

X Synopsys manuals
• HDL Compiler for Verilog Reference Manual
• VHDL Compiler Reference

X Altera manuals
• Synopsys & MAX+PLUS II Software Interface Guide

• Altera/Synopsys User Guide

X Xilinx manuals
• Quick Start Guide for Xilinx Alliance Series
• Synopsys (XSI) Interface/Tutorial Guide

X CIC Training Manuals
• VHDL Training Manual
• Verilog Training Manual

Synopsys on-line document

as_sig.pdf and as_ug.pdf on Internet

Xilinx on-line books

Summary & Getting Help - µCIC Training Manual

 Getting Help
X CIC technical support for FPGAs: <Ô|

• Phone : (03)5773693 ext. 146
• Email : max@mbox.cic.edu.tw
• News : nsc.cic

• ftp-site : ftp://ftp.cic.edu.tw/pub (140.126.24.62)
• WWW : http://www.cic.edu.tw

Thank You!

